全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kinetic Chain Rehabilitation: A Theoretical Framework

DOI: 10.1155/2012/853037

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sequenced physiologic muscle activations in the upper and lower extremity result in an integrated biomechanical task. This sequencing is known as the kinetic chain, and, in upper extremity dominant tasks, the energy development and output follows a proximal to distal sequencing. Impairment of one or more kinetic chain links can create dysfunctional biomechanical output leading to pain and/or injury. When deficits exist in the preceding links, they can negatively affect the shoulder. Rehabilitation of shoulder injuries should involve evaluation for and restoration of all kinetic chain deficits that may hinder kinetic chain function. Rehabilitation programs focused on eliminating kinetic chain deficits, and soreness should follow a proximal to distal rationale where lower extremity impairments are addressed in addition to the upper extremity impairments. A logical progression focusing on flexibility, strength, proprioception, and endurance with kinetic chain influence is recommended. 1. Introduction Dynamic upper extremity dominant tasks such as throwing, hitting, and serving occur as the result of the integrated, multisegmented, sequential joint motion, and muscle activation system known as the kinetic chain. Proper utilization of the kinetic chain allows maximal force to be developed in the core which can then be efficiently transferred to the arm during these actions. In order for the tasks to be effective and efficient, the kinetic chain links (the different body segments) must have optimal amounts of muscle flexibility, strength, proprioception, and endurance as well as the ability to perform the task consistently on a repetitive basis. Proper kinetic chain sequences referred to as biomechanical “nodes” have been previously described for baseball pitchers and tennis players [1, 2]. When these nodes are not achieved, increased load and stress may occur on the shoulder and elbow joints which can lead to pain or injury. The focus for clinicians is to identify the cause(s) which led or contributed to the impairment. The clinician must then implement injury rehabilitation and prevention programs which will initially eliminate physical deficits followed by a focus on increasing an athlete’s longevity while simultaneously decreasing the risk of injury. The purpose of this paper is to present a theoretical framework which focuses on maximizing kinetic chain utilization and output, accomplished through improving flexibility of all involved joints and soft tissue, strengthening the lower extremity and core musculature, optimizing scapular control, and

References

[1]  D. Lintner, T. J. Noonan, and W. B. Kibler, “Injury patterns and biomechanics of the athlete's shoulder,” Clinics in Sports Medicine, vol. 27, no. 4, pp. 527–551, 2008.
[2]  J. T. Davis, O. Limpisvasti, D. Fluhme et al., “The effect of pitching biomechanics on the upper extremity in youth and adolescent baseball pitchers,” American Journal of Sports Medicine, vol. 37, no. 8, pp. 1484–1491, 2009.
[3]  W. B. Kibler, J. McMullen, and T. Uhl, “Shoulder rehabilitation strategies, guidelines, and practice,” Operative Techniques in Sports Medicine, vol. 8, no. 4, pp. 258–267, 2000.
[4]  W. B. Kibler, J. Press, and A. Sciascia, “The role of core stability in athletic function.,” Sports Medicine, vol. 36, no. 3, pp. 189–198, 2006.
[5]  S. D. Bagg and W. J. Forrest, “A biomechanical analysis of scapular rotation during arm abduction in the scapular plane,” American Journal of Physical Medicine and Rehabilitation, vol. 67, no. 6, pp. 238–245, 1988.
[6]  P. M. Ludewig, T. M. Cook, and D. A. Nawoczenski, “Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation,” Journal of Orthopaedic and Sports Physical Therapy, vol. 24, no. 2, pp. 57–65, 1996.
[7]  S. Lippitt, J. E. Vanderhooft, S. L. Harris, J. A. Sidles, D. T. Harryman II, and F. A. Matsen III, “Glenohumeral stability from concavity-compression: a quantitative analysis,” Journal of Shoulder and Elbow Surgery, vol. 2, no. 1, pp. 27–35, 1993.
[8]  T. A. Blackburn, W. D. McLeod, B. White, and L. Wofford, “EMG analysis of posterior rotator cuff exercises,” Journal of Athletic Training, vol. 25, no. 1, pp. 40–45, 1990.
[9]  H. Townsend, F. W. Jobe, M. Pink, and J. Perry, “Electromyographic analysis of the glenohumeral muscles during a baseball rehabilitation program,” American Journal of Sports Medicine, vol. 19, no. 3, pp. 264–272, 1991.
[10]  B. T. Ballantyne, S. J. O'Hare, J. L. Paschall et al., “Electromyographic activity of selected shoulder muscles in commonly used therapeutic exercises,” Physical Therapy, vol. 73, no. 10, pp. 668–682, 1993.
[11]  S. F. Nadler, G. A. Malanga, L. A. Bartoli, J. H. Feinberg, M. Prybicien, and M. Deprince, “Hip muscle imbalance and low back pain in athletes: influence of core strengthening,” Medicine and Science in Sports and Exercise, vol. 34, no. 1, pp. 9–16, 2002.
[12]  J. S. Petrofsky, J. Batt, J. Brown et al., “Improving the outcomes after back injury by a core muscle strengthening program,” Journal of Applied Research, vol. 8, no. 1, pp. 62–75, 2008.
[13]  M. D. Ross, “Effect of a 15-day pragmatic hamstring stretching program on hamstring flexibility and single hop for distance test performance,” Research in Sports Medicine, vol. 15, no. 4, pp. 271–281, 2007.
[14]  W. D. Bandy, J. M. Irion, and M. Briggler, “The effect of static stretch and dynamic range of motion training on the flexibility of the hamstring muscles,” Journal of Orthopaedic and Sports Physical Therapy, vol. 27, no. 4, pp. 295–300, 1998.
[15]  F. Higgs and S. L. Winter, “The Effect of a four-week proprioceptive neuromuscular facilitation stretching program on isokinetic torque production,” Journal of Strength and Conditioning Research, vol. 23, no. 5, pp. 1442–1447, 2009.
[16]  T. W. Worrell, T. L. Smith, and J. Winegardner, “Effect of hamstring stretching on hamstring muscle performance,” Journal of Orthopaedic and Sports Physical Therapy, vol. 20, no. 3, pp. 154–159, 1994.
[17]  B. Yuktasir and F. Kaya, “Investigation into the long-term effects of static and PNF stretching exercises on range of motion and jump performance,” Journal of Bodywork and Movement Therapies, vol. 13, no. 1, pp. 11–21, 2009.
[18]  S. M. Lephart, J. M. Smoliga, J. B. Myers, T. C. Sell, and Y. S. Tsai, “An eight-week golf-specific exercise program improves physical characteristics, swing mechanics, and golf performance in recreational golfers,” Journal of Strength and Conditioning Research, vol. 21, no. 3, pp. 860–869, 2007.
[19]  Y. S. Tsai, T. C. Sell, J. M. Smoliga, J. B. Myers, K. E. Learman, and S. M. Lephart, “A Comparison of physical characteristics and swing mechanics between golfers with and without a history of low back pain,” Journal of Orthopaedic and Sports Physical Therapy, vol. 40, no. 7, pp. 430–438, 2010.
[20]  V. B. Vad, A. L. Bhat, D. Basrai, A. Gebeh, D. D. Aspergren, and J. R. Andrews, “Low back pain in professional golfers: the role of associated hip and low back range-of-motion deficits,” American Journal of Sports Medicine, vol. 32, no. 2, pp. 494–497, 2004.
[21]  T. F. Tyler, S. J. Nicholas, T. Roy, and G. W. Gleim, “Quantification of posterior capsule tightness and motion loss in patients with shoulder impingement,” American Journal of Sports Medicine, vol. 28, no. 5, pp. 668–673, 2000.
[22]  A. J. Robb, G. Fleisig, K. Wilk, L. MacRina, B. Bolt, and J. Pajaczkowski, “Passive ranges of motion of the hips and their relationship with pitching biomechanics and ball velocity in professional baseball pitchers,” American Journal of Sports Medicine, vol. 38, no. 12, pp. 2487–2493, 2010.
[23]  M. M. Reinold, K. E. Wilk, L. C. Macrina et al., “Changes in shoulder and elbow passive range of motion after pitching in professional baseball players,” American Journal of Sports Medicine, vol. 36, no. 3, pp. 523–527, 2008.
[24]  M. T. Freehill, B. G. Ebel, K. R. Archer, et al., “Glenohumeral range of motion in major league pitchers: Changes over the playing season,” Sports Health, vol. 3, no. 1, pp. 97–104, 2011.
[25]  T. F. Tyler, S. J. Nicholas, S. J. Lee, M. Mullaney, and M. P. McHugh, “Correction of posterior shoulder tightness is associated with symptom resolution in patients with internal impingement,” American Journal of Sports Medicine, vol. 38, no. 1, pp. 114–119, 2010.
[26]  E. Sauers, A. August, and A. Snyder, “Fauls stretching routine produces acute gains in throwing shoulder mobility in collegiate baseball players,” Journal of Sport Rehabilitation, vol. 16, no. 1, pp. 28–40, 2007.
[27]  J. B. Myers, K. G. Laudner, M. R. Pasquale, J. P. Bradley, and S. M. Lephart, “Glenohumeral range of motion deficits and posterior shoulder tightness in throwers with pathologic internal impingement,” American Journal of Sports Medicine, vol. 34, no. 3, pp. 385–391, 2006.
[28]  J. D. Borstad and P. M. Ludewig, “The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals,” Journal of Orthopaedic and Sports Physical Therapy, vol. 35, no. 4, pp. 227–238, 2005.
[29]  S. S. Burkhart, C. D. Morgan, and W. B. Kibler, “The disabled throwing shoulder: spectrum of pathology part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation,” Arthroscopy, vol. 19, no. 6, pp. 641–661, 2003.
[30]  A. Sciascia and W. B. Kibler, “The pediatric overhead athlete: what is the real problem?” Clinical Journal of Sport Medicine, vol. 16, no. 6, pp. 471–477, 2006.
[31]  P. McClure, J. Balaicuis, D. Heiland, M. E. Broersma, C. K. Thorndike, and A. Wood, “A randomized controlled comparison of stretching procedures for posterior shoulder tightness,” Journal of Orthopaedic and Sports Physical Therapy, vol. 37, no. 3, pp. 108–114, 2007.
[32]  K. G. Laudner, R. C. Sipes, and J. T. Wilson, “The acute effects of sleeper stretches on shoulder range of motion,” Journal of Athletic Training, vol. 43, no. 4, pp. 359–363, 2008.
[33]  J. D. Borstad and P. M. Ludewig, “Comparison of three stretches for the pectoralis minor muscle,” Journal of Shoulder and Elbow Surgery, vol. 15, no. 3, pp. 324–330, 2006.
[34]  W. Ben Kibler, A. D. Sciascia, T. L. Uhl, N. Tambay, and T. Cunningham, “Electromyographic analysis of specific exercises for scapular control in early phases of shoulder rehabilitation,” American Journal of Sports Medicine, vol. 36, no. 9, pp. 1789–1798, 2008.
[35]  M. Zattara and S. Bouisset, “Posturo-kinetic organisation during the early phase of voluntary upper limb movement. I. Normal subjects,” Journal of Neurology Neurosurgery and Psychiatry, vol. 51, no. 7, pp. 956–965, 1988.
[36]  P. J. Cordo and L. M. Nashner, “Properties of postural adjustments associated with rapid arm movements,” Journal of Neurophysiology, vol. 47, no. 2, pp. 287–302, 1982.
[37]  S. M. Lephart and T. J. Henry, “The physiological basis for open and closed kinetic chain rehabilitation for the upper extremity,” Journal of Sport Rehabilitation, vol. 5, no. 1, pp. 71–87, 1996.
[38]  J. Perry, “Muscle control of the shoulder,” in The Shoulder, C. R. Rowe, Ed., pp. 17–34, Churchill Livingston, New York, NY, USA, 1988.
[39]  W. B. Kibler, “The role of the scapula in athletic shoulder function,” American Journal of Sports Medicine, vol. 26, no. 2, pp. 325–337, 1998.
[40]  W. B. Kibler, A. Sciascia, and D. Dome, “Evaluation of apparent and absolute supraspinatus strength in patients with shoulder injury using the scapular retraction test,” American Journal of Sports Medicine, vol. 34, no. 10, pp. 1643–1647, 2006.
[41]  J. Smith, B. R. Kotajarvi, D. J. Padgett, and J. J. Eischen, “Effect of scapular protraction and retraction on isometric shoulder elevation strength,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 3, pp. 367–370, 2002.
[42]  J. Smith, C. T. Dietrich, B. R. Kotajarvi, and K. R. Kaufman, “The effect of scapular protraction on isometric shoulder rotation strength in normal subjects,” Journal of Shoulder and Elbow Surgery, vol. 15, no. 3, pp. 339–343, 2006.
[43]  A. R. Tate, P. McClure, S. Kareha, and D. Irwin, “Effect of the scapula reposition test on shoulder impingement symptoms and elevation strength in overhead athletes,” Journal of Orthopaedic and Sports Physical Therapy, vol. 38, no. 1, pp. 4–11, 2008.
[44]  W. B. Kibler and B. Livingston, “Closed-chain rehabilitation for upper and lower extremities.,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 9, no. 6, pp. 412–421, 2001.
[45]  K. E. Wilk, K. Meister, and J. R. Andrews, “Current concepts in the rehabilitation of the overhead throwing athlete,” American Journal of Sports Medicine, vol. 30, no. 1, pp. 136–151, 2002.
[46]  M. J. Axe, T. C. Windley, and L. Snyder-Mackler, “Data-based interval throwing programs for baseball position players from age 13 to college level,” Journal of Sport Rehabilitation, vol. 10, no. 4, pp. 267–286, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133