%0 Journal Article %T Kinetic Chain Rehabilitation: A Theoretical Framework %A Aaron Sciascia %A Robin Cromwell %J Rehabilitation Research and Practice %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/853037 %X Sequenced physiologic muscle activations in the upper and lower extremity result in an integrated biomechanical task. This sequencing is known as the kinetic chain, and, in upper extremity dominant tasks, the energy development and output follows a proximal to distal sequencing. Impairment of one or more kinetic chain links can create dysfunctional biomechanical output leading to pain and/or injury. When deficits exist in the preceding links, they can negatively affect the shoulder. Rehabilitation of shoulder injuries should involve evaluation for and restoration of all kinetic chain deficits that may hinder kinetic chain function. Rehabilitation programs focused on eliminating kinetic chain deficits, and soreness should follow a proximal to distal rationale where lower extremity impairments are addressed in addition to the upper extremity impairments. A logical progression focusing on flexibility, strength, proprioception, and endurance with kinetic chain influence is recommended. 1. Introduction Dynamic upper extremity dominant tasks such as throwing, hitting, and serving occur as the result of the integrated, multisegmented, sequential joint motion, and muscle activation system known as the kinetic chain. Proper utilization of the kinetic chain allows maximal force to be developed in the core which can then be efficiently transferred to the arm during these actions. In order for the tasks to be effective and efficient, the kinetic chain links (the different body segments) must have optimal amounts of muscle flexibility, strength, proprioception, and endurance as well as the ability to perform the task consistently on a repetitive basis. Proper kinetic chain sequences referred to as biomechanical ¡°nodes¡± have been previously described for baseball pitchers and tennis players [1, 2]. When these nodes are not achieved, increased load and stress may occur on the shoulder and elbow joints which can lead to pain or injury. The focus for clinicians is to identify the cause(s) which led or contributed to the impairment. The clinician must then implement injury rehabilitation and prevention programs which will initially eliminate physical deficits followed by a focus on increasing an athlete¡¯s longevity while simultaneously decreasing the risk of injury. The purpose of this paper is to present a theoretical framework which focuses on maximizing kinetic chain utilization and output, accomplished through improving flexibility of all involved joints and soft tissue, strengthening the lower extremity and core musculature, optimizing scapular control, and %U http://www.hindawi.com/journals/rerp/2012/853037/