全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

DOI:10.7524/j.issn.0254-6108.2014.01.007

Keywords: 燃煤烟气,预测模型,汞形态

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用GA-BP的人工神经网络算法建立燃煤汞排放预测模型,确定煤中汞含量、煤的发热量、煤中硫含量、煤中氯含量、挥发份含量、排烟温度作为输入矢量,元素态汞、氧化态汞和颗粒态汞3个因素作为输出参数,通过对20个燃煤锅炉汞排放形态的测试数据进行模型训练,结合实际测试数据和预测数据对误差来源进行了分析.通过对3个样本进行验证,分析人工神经网络的实际预测效果.研究结果表明,训练与预测的精度都是符合汞排放预测实际要求的,预测精度达0.895,分析表明利用人工神经网络建立预测模型可对燃煤汞排放进行预测.

References

[1]  张军营, 任德贻, 徐德伟. 煤中汞及其对环境的影响[J]. 环境科学进展, 1999, 7(3): 100-104
[2]  廖自基. 环境中微量重金属元素的污染危害与迁移转化[M]. 北京: 科学出版社, 1989
[3]  姚强等. 洁净煤技术[M]. 北京:化学工业出版社, 2005, 1: 165-177
[4]  浦健, 程静. 基于PSO-Elman神经网络的汽轮机排汽焓在线预测计算[J]. 南京师范大学学报(工程技术版), 2009, 19(2): 35-39
[5]  Kawashima M. Artificial neural network back propagation model with three-phase annealing developed for the building energy predictor shootout[J]. ASHRAE Trans, 1994, 100(2):1096-1103
[6]  Lin J Z, Luo Z, Tong L Y. A new multi-objective programming Scheme for topology optimization of compliant mechanisms[J]. Struct Multidisc Optim, 2010, (40):241-255
[7]  Lau G K, Du H, Lim M K. Use of functional specifications as objective functions in topological optimization of compliant mechanism[J].Computer Methods in Applied Mechanics and Engineering, 2011, (190): 4421-4433
[8]  Villers J. Back-propagation Neural Nets with One and Two Hidden Layers[J]. IEEE Trans On Neural Networks, 1992, 4(1): 136-146
[9]  Wang S X, Zhang L, Li G H, et al. Mercury emission and speciation of coal-fired power plants in China[J]. Atmospheric, Chemistry, and Physics, 2010, 10: 1183-1192
[10]  王立刚, 徐雪, 王凡, 等. 燃煤飞灰粒径分布函数的分形特征及其对吸附性能的影响[J]. 环境化学, 2008, 27(2):215-217
[11]  吴成军, 段钰锋. 燃煤烟气中汞形态分布的神经网络预测研究[J]. 电站系统工程, 2007, 23(6): 15-16
[12]  朱珍锦, 薛来, 谈仪. 负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究[J]. 中国电机工程学报, 2001, 21(7): 87-94
[13]  赵毅, 王丽蓉. 火电厂燃煤中汞的迁移转化规律研究[J]. 中国电力, 1994, 6: 52-54
[14]  Kaan Yetilmezsoy, Sevgi Demirel. Artificial neural network (ANN) approach for modeling of Pb(Ⅱ) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of Hazardous Materials, 2008, 153(3): 1288-1300
[15]  王琳琳. BP人工神经网络用于城市土壤中重金属(Cd、Pb)形态分析的研究[D]. 长春:吉林大学, 2009
[16]  鲁文华. 电站锅炉受热面积灰、结渣在线监测的研究与应用[D]. 北京:华北电力(北京)大学, 2002
[17]  杨甲沛. 基于自适应学习速率的改进型BP算法研究[D]. 天津:天津大学, 2008
[18]  Kashani M N, Aminian J, Farrokhi M. Dynamic crude oil fouling prediction in industrial preheaters using optimized ANN based moving window technique[J]. Chemical Engineering Research & Design, 2012, 90(7):938-949
[19]  Zhao B T, Zhang Z, Jin X J, et al. Modeling mercury speciation in combustion flue gases using support vector machine: Prediction and evaluation. Journal of Hazardous Materials, 2010(174):244-250
[20]  Robert R J, Shankar K, Hossein S. Artificial neural network-based estimation of mercury speciation in combustion flue gases[J]. Fuel Processing Technology, 2004, 85(6/7): 451-462
[21]  Abdel-Aal R E. Predictive modeling of mercury speciation in combustion flue gases using GMDH-based abductive networks[J]. Fuel Processing Technology, 2007, 88(5): 483-491
[22]  Lee S J, Seo Y C, Jongsoo Jurng J S, et al. Mercury emission from selected stationary combustion sources in Korea[J]. Science of the Total Environment, 2004, 325: 55-161
[23]  朱珍锦, 薛来, 谈仪. 负荷改变对煤粉锅炉燃烧产物中汞的分布特征影响研究[J]. 中国电机工程学报, 2001, 21(7):87-94
[24]  赵文秀. 小波网络在空调负荷预测中的应用[D]. 西安:西安科技大学, 2009:19-22

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133