全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

铜负载Y分子筛中Cu物种的表征及分析

DOI: 10.16085/j.issn.1000-6613.2015.07.020, PP. 1933-1940

Keywords: CuY催化剂,表面,铜物种,存在状态,价态,分布,表征分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了铜负载Y分子筛(CuY)中Cu物种表征及分析的研究进展,重点阐述了近年来X射线衍射分析(XRD)、透射电子显微镜分析(TEM)、X射线光电子能谱分析(XPS)、H2程序升温还原(H2-TPR)、原位红外光谱(CO-IR和NO-IR)、电子顺磁共振(ESR)等表征方法在CuY中Cu物种的微观结构分析方面取得的进展。还对制备方法对CuY中Cu物种落位和性能的影响进行了综述,指出综合采用这些表征方法,得到CuY中Cu物种状态、价态、落位及含量等更加全面、准确的信息,进而选择合适的制备方法调控CuY中Cu物种存在状态、价态及落位,制备出性能更佳的CuY是今后发展的方向。

References

[1]  Schoonheydt R A. Transition metal ions in zeolites:Siting and energetics of Cu2+[J]. Catalysis Reviews, 1993, 35(1):129-168.
[2]  Conesa J C, Soria J. Electron spin resonance of copper-exchanged Y zeolites. Part 1.Behaviour of the cation during dehydration[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1979, 75:406-422.
[3]  Ibrahim K, Hall A. New occurrences of diagenetic faujasite in the Quaternary tuffs of northeast Jordan[J]. European Journal of Mineralogy, 1995, 7:1129-1135.
[4]  徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京:科学出版社, 2004:246-247.
[5]  Song H, Wan X, Dai M, et al. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Processing Technology, 2013, 116:52-62.
[6]  Takahashi A, Yang R T, Munson C L, et al. Cu(Ⅰ)-Y-zeolite as a superior adsorbent for diene/olefin separation[J]. Langmuir, 2001, 17(26):8405-8413.
[7]  Hernández-Maldonado A J, Yang F H, Qi G. et al. Desulfurization of transportation fuels by π-complexation sorbents:Cu(Ⅰ)-, Ni(Ⅱ)-, and Zn(Ⅱ)-zeolites[J]. Applied Catalysis B:Environmental, 2005, 56(1-2):111-126.
[8]  Ochońska J, McClymont D, Jod?owski P J, et al. Copper exchanged ultrastable zeolite Y:A catalyst for NH3-SCR of NOx from stationary biogas engines[J]. Catalysis Today, 2012, 191(1):6-11.
[9]  Kieger S, Delahay G, Coq B. Influence of co-cations in the selective catalytic reduction of NO by NH3 over copper exchanged faujasite zeolites[J]. Applied Catalysis B:Environmental, 2000, 25(1):1-9.
[10]  King S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. Journal of Catalysis, 1996, 161(2):530-538.
[11]  王坤, 李忠 李安民. 氧化羰基化合成碳酸二甲酯催化剂的研究进展[J]. 化工进展, 2013(11):2631-2637.
[12]  仇鹏 王保伟. 羰基合成碳酸二甲酯的研究进展[J]. 化工进展, 2010, 29(6):56-62.
[13]  王佳臻, 郑华艳 孟凡会, 等. 制备方法对CuY催化剂活性组分Cu落位及催化性能影响[C]//中国化学会第28届学术年会. 成都, 2012.
[14]  王瑞玉 李忠. CuNaY分子筛的制备及其催化甲醇氧化羰基化[J]. 燃料化学学报, 2013, 32(11):1361-1366.
[15]  Gentry S J, Hurst N W, Jones A. Temperature programmed reduction of copper ions in zeolites[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1979, 75:1688-1699.
[16]  Huang S Y, Chen P Z, Yan B, et al. Modification of Y zeolite with alkaline treatment:Textural properties and catalytic activity for diethyl carbonate synthesis[J]. Industrial & Engineering Chemistry Research, 2013, 52(19):6349-6356.
[17]  Huang S, Wang Y, Wang Z, et al. Cu-doped zeolites for catalytic oxidative carbonylation:The role of Br?nsted acids[J]. Applied Catalysis A:General, 2012, 417-418:236-242.
[18]  Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1):11-24.
[19]  Drake I J, Zhang Y, Briggs D, et al. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate[J]. The Journal of Physical Chemistry B, 2006, 110(24):11654-11664.
[20]  Richter M, Fait M J G, Eckelt R, et al. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Applied Catalysis B:Environmental, 2007, 73(3-4):269-281.
[21]  Nam J K, Choi M J, Cho D H, et al. The influence of support in the synthesis of dimethyl carbonate by Cu-based catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2013, 370:7-13.
[22]  付廷俊, 郑华艳, 牛燕燕, 等. Ce, La和Cs离子对CuY催化甲醇氧化羰基化活性中心的影响[J]. 化学学报, 2011(15):1765-1772.
[23]  李忠, 付廷俊 郑华艳. CuY制备方法对其催化甲醇氧化羰基化活性中心的影响[J]. 无机化学学报, 2011(8):1483-1490.
[24]  王佳臻, 郑华艳 李忠. CuY催化剂中Cu活性中心落位调控及其催化性能的影响[C]//第十七届全国分子筛学术大会, 银川, 2013.
[25]  Yi D, Huang H, Meng X, et al. Adsorption-desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites[J]. Applied Catalysis B:Environmental, 2014, 148-149:377-386.
[26]  Zahmakiran M, ?zkar S. Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles[J]. Materials Letters, 2009, 63(12):1033-1036.
[27]  Zahmak?ran M, Durap F, ?zkar S. Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane[J]. International Journal of Hydrogen Energy, 2010, 35(1):187-197.
[28]  Li X, Zhang X, Lei L. Preparation of CuNaY zeolites with microwave irradiation and their application for removing thiophene from model fuel[J]. Separation and Purification Technology, 2009, 64(3):326-331.
[29]  Ren J, Liu S, Li Z, et al. Structural feature and catalytic performance of Cu-SiO2-TiO2 cogelled xerogel catalysts for oxidative carbonylation of methanol to dimethyl carbonate[J]. Catalysis Communications, 2011, 12(5):357-361.
[30]  Alonso F, Melkonian T, Moglie Y, et al. Homocoupling of terminal alkynes catalysed by ultrafine copper nanoparticles on titania[J]. European Journal of Organic Chemistry, 2011(13):2524-2530.
[31]  Yuan Y, Cao W, Weng W. CuCl2 immobilized on amino-functionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethylcarbonate[J]. Journal of Catalysis, 2004, 228(2):311-320.
[32]  Lázaro Martínez J M, Rodríguez-Castellón E, Sánchez R M T, et al. XPS studies on the Cu(Ⅰ, Ⅱ)-polyampholyte heterogeneous catalyst:An insight into its structure and mechanism[J]. Journal of Molecular Catalysis A:Chemical, 2011, 339(1-2):43-51.
[33]  徐舒涛, 张维萍, 韩秀文, 等. 不同金属离子交换的FAU型分子筛的超极化129Xe NMR研究[J]. 催化学报, 2009(9):945-950.
[34]  Delahay D B G. Recent advances in CuI/IIY:Experiments and modeling[J]. Catalysis Reviews, 2006, 48:269-313.
[35]  Maxwell I E, De Boer J J. Crystal structures and dehydrated divalent-copper-exchanged faujasite[J]. The Journal of Physical Chemistry, 1975, 79(17):1874-1879.
[36]  Berthomieu D, Jardillier N, Delahay G, et al. Experimental and theoretical approaches to the study of TMI-zeolite (TMI=Fe, Co, Cu)[J]. Catalysis Today, 2005, 110(3-4):294-302.
[37]  Torre-Abreu C, Henriques C, Ribeiro F R, et al. Selective catalytic reduction of NO on copper-exchanged zeolites:The role of the structure of the zeolite in the nature of copper-active sites[J]. Catalysis Today, 1999, 54(4):407-418.
[38]  Antunes A P, Ribeiro M F, Silva J M, et al. Catalytic oxidation of toluene over CuNaHY zeolites:Coke formation and removal[J]. Applied Catalysis B:Environmental, 2001, 33(2):149-164.
[39]  Kieger S, Delahay G, Coq B. et al. Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere[J]. Journal of Catalysis, 1999, 183(2):267-280.
[40]  李忠, 付廷俊, 王瑞玉, 等. 高活性甲醇氧化羰基化CuY催化剂的结构及催化活性中心[J]. 高等学校化学学报, 2011(6):1366-1372.
[41]  Campos-Martín J M, Guerrero-Ruiz A, Fierro J L G. Changes of copper location in CuY zeolites induced by preparation methods[J]. Catalysis Letters, 1996, 41(1-2):55-61.
[42]  Palomino G T, Bordiga S, Zecchina A, et al. XRD, XAS, and IR characterization of copper-exchanged Y zeolite[J]. The Journal of Physical Chemistry B, 2000, 104(36):8641-8651.
[43]  赵地顺. 催化剂评价与表征[M]. 北京:化学工业出版社, 2011:264-274.
[44]  Singh R K, Kothiyal G P, Srinivasan A. Electron spin resonance and magnetic studies on CaO-SiO2-P2O5-Na2O-Fe2O3 glasses[J]. Journal of Non-crystalline Solids, 2008, 354(27):3166-3170.
[45]  Moreno-González M, Blasco T, Góra-Marek K, et al. Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies[J]. Catalysis Today, 2014, 227:123-129.
[46]  Seelan S, Sinha A K, Srinivas D, et al. Spectroscopic investigation and catalytic activity of copper(Ⅱ) phthalocyanine encapsulated in zeolite Y[J]. Journal of Molecular Catalysis A:Chemical, 2000, 157(1-2):163-171.
[47]  Yahiro H, Ohmori Y, Shiotani M. Magnetic interaction between copper (Ⅱ) ion and paramagnetic NO and O2 molecules in Y-type zeolite at low temperature:An EPR study[J]. Microporous and Mesoporous Materials, 2005, 83(1-3):165-171.
[48]  Yu J S, Kevan L. Temperature dependence of copper(Ⅱ) migration and formation of new copper(Ⅱ) species during catalytic propylene oxidation on copper(Ⅱ)-exchanged Y zeolite and comparison with X zeolite[J]. The Journal of Physical Chemistry, 1990, 94(19):7612-7620.
[49]  Ichikawa T, Kevan L. Location of cupric ions in Y zeolites by electron spin echo spectrometry:Contrast between sodium- and potassium-Y zeolites and comparison with X zeolites[J]. The Journal of Physical Chemistry, 1983, 87(22):4433-4437.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133