全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钙离子诱导的海藻酸钠/黄原胶凝胶化临界行为研究

DOI: 10.3724/SP.J.1105.2013.13071, PP. 1390-1398

Keywords: 海藻酸钠,黄原胶,混合物,凝胶化,临界行为,分形维数

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了海藻酸钠/黄原胶混合体系的相行为及其对海藻酸钠-钙离子凝胶化临界行为的影响.当海藻酸钠浓度为0.5wt%时,随着黄原胶的添加,混合体系出现相容、相分离及液晶3种不同的相行为.与纯黄原胶溶液相比,海藻酸钠/黄原胶混合溶液在更低的黄原胶浓度下开始形成液晶,这是由于混合体系中相分离的发生导致了黄原胶有效浓度升高.利用葡萄糖酸内酯(GDL)在线酸化Ca-EDTA,释放钙离子,研究了不同钙离子引入量时(f=[Ca2+]/[COO-])混合体系的黏弹性.Winter-Chambon分析发现临界凝胶点(fgel)随黄原胶浓度的增加而降低.当相分离发生时,临界凝胶点急剧降低,当液晶结构形成后,临界凝胶点呈现上升趋势.通过对比Winter-Chambon方法和临界凝胶点模量松弛法所测得的松弛临界指数(nw和nr),发现黄原胶的添加使海藻酸钠临界凝胶失去结构自相似性.相分离的发生导致临界凝胶结构排列更加致密,而液晶的出现使临界凝胶结构排列相对疏松.

References

[1]  5 Maret G,Milas M,Rinaudo M.Polym Bull,1981,4(5):291~297
[2]  9 Boyd M J,Mitchell J R,Hampson F C,Jolliffe I G,Dettmar P W,Melia C D.Phase Separation Behaviour in Xanthan and Sodium Alginate Mixtures.In:Williams P A,Phillips G O,eds.Gums and Stabilizers for the Food Industry 12.England:Royal Soc Chemistry,2004.262~271
[3]  10 Boyd M J,Hampson F C,Jolliffe I G,Dettmar P W,Mitchell J R,Melia C D.Food Hydrocolloid,2009,23:2458~2467
[4]  11 Mandel K G,Daggy B P,Brodie D A,Jacoby H I.Aliment Pharm Therap,2000,14(6):669~690
[5]  12 Marciani L,Gowland P A,Spiller R C,Manoj P,Moore R J,Young P,Al-Sahab S,Bush D,Wright J,Fillery-Travis J.J Nutr,2000,130(1):122~127
[6]  13 TangM,Dettmar P W,Batchelor H K.Int J Pharm,2005,292:169~177
[7]  14 Boyd M J.The Phase Behaviour of Xanthan Based Biopolymer Mixtures.Doctoral Dissertation of the University of Nottingham,2005
[8]  19 Rioux L E,Turgeon S L,Beaulieu M.CarbohydrPolym,2007,69(3):530~537
[9]  21 Grasdalen H,Larsen B,Smidsrod O.Carbohydr Res,1979,68:23~31
[10]  23 Funami T,Fang Y P,Noda S,Ishihara S,Nakauma M,Draget K I,Nishinari K,Phillips G O.Food Hydrocolloid,2009,23:1746~1755
[11]  24 Liu X X,Qian L Y,Shu T,Tong Z.Polymer,2003,44:407~412
[12]  25 Lee H C,Brant D A.Macromolecules,2002,35:2223~2234
[13]  26 Lee H C,Brant D A.Biomacromolecules,2002,3:742~753
[14]  27 Lu L,Liu X X,Dai L,Tong Z.Biomacromolecules,2005,6:2150~2156
[15]  34 Lu L,Liu X X,Tong Z,Gao Q X.J Phys Chem B,2006,110(49):25013~25020
[16]  1 Fang Y P,Al-assaf S, Phillips G O,Nishinari K,Funami T,Williams P A,Li L B.J Phys Cham B,2007,111:2456~2462
[17]  2 Grant G T,Morris E R,Rees D A,Smith P J C,Thomas D.FEBS Lett,1973,32(1):195~198
[18]  3 Morris E R.Abstr Am Chem Soc,1976,172(SEP3):19~19
[19]  4 Lee H C,Brant D A.Macromolecules,2002,35:2212~2222
[20]  6 Rinaudo M,Milas M.Carbohydr Polym,1982,2:264~269
[21]  7 Milas M,Rinaudo M.Polym Bull,1983,10(5-6):271~2738 Boyd M J,Mitchell J R,Hampson F C,Jolliffe I G,Dettmar P W,Melia C D.J PharmPharmacol,2004,56S:S48~S49
[22]  15 Lu Lu(鲁路),Liu Xinxing(刘新星),Tong Zhen(童真).Polym Bull(高分子通报),2008,(11):39~46
[23]  16 Winter H H,Chambon F.J Rheol,1986,30(2):367~382
[24]  17 Chambon F,Winter H H.J Rheol,1987,31(8):683~697
[25]  18 Muthukumar M.Macromolecules,1989,22:4656~4658
[26]  20 Sato T,Norisuye T,Fujita H.Polym J,1984,16(4):341~350
[27]  22 Grasdalen H.Carbohydr Res,1983,118:255~260
[28]  28 Fang Y P,Takahashi R,Nishinari K.Biopolymers,2004,74:302~315
[29]  29 Fang Y P,Nishinari K.Biopolymers,2004,73:44~60
[30]  30 Nijenhuis K T,Winter H H.Macromolecules,1989,22:411~414
[31]  31 Richtering H W,Gagnon K D,Lenz R W,Fuller R C,Winter H H.Macromolecules,1992,25:2429~2433
[32]  32 Michon C,Cuvelier G,Launay B.Rheol Acta,1993,32:94~103
[33]  33 Liu Xinxing(刘新星),Qian Liying(钱丽颖),Shu Tan(舒坦),Lu Lu(鲁路),Tong Zhen(童真).Acta Polymerica Sinica(高分子学报),2003,(4):484~488

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133