全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于熵模型的动态粒子群优化算法

Keywords: 粒子群优化算法,动态优化,熵模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

受多种群并行寻优机制的启发,提出了一种基于熵模型的动态粒子群优化算法(entropydynamicmulti-PSO,EDM-PSO)用于处理动态优化问题.将解空间划分为多个子空间,在每个子空间中利用熵模型增加种群多样性,多种群并行搜索,利用多点环境检测机制检测环境变化.对动态多峰benchmark优化问题进行了数值实验,并与其他几种动态优化算法进行了比较,结果表明:EDM-PSO算法对于处理动态优化问题具有优势.

References

[1]  KENNEDY J, EBERHART R. Particle swarm optimization[C] Proc IEEE Int Conf Neural Networks. [S. l. ]:IEEE, 1995: 1942-1948.
[2]  RATNAWEERA A, HALGAMUGE S, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [ J]. Evolutionary Computation, IEEE Transactions on, 2004, 8(3): 240-255.
[3]  CHANG B C H, RATNAWEERA A, HALGAMUGE S K,et al. Particle swarm optimization for protein motif discovery [ J ]. Genetic Programming and Evolvable Machines, 2004, 5(2): 203-214.
[4]  RAKITIANSKAIA A, ENGELBRECHT A P. Training neural networks with PSO in dynamic environments[C] Evolutionary Computation, 2009, CEC,09. IEEE Congress on. Trondheim: IEEE, 2009: 667-673.
[5]  KARDAM N, ANSARI M A, FARHEEN F.Communication and load balancing using SCADA model based integrated substation [ C ] Energy Efficient
[6]  Technologies for Sustainability ( ICEETS ), 2013 International Conference on. Nagercoil: IEEE, 2013:1256-1261.
[7]  JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer for dynamic optimization problems [M] Applications of Evolutionary Computing. [S. l. ]: Springer Berlin Heidelberg, 2004: 513-524.
[8]  HASHEMI A B, MEYBODI M R. Cellular PSO: a PSO for dynamic environments [M]Advances in computation and intelligence. [ S. l. ]: Springer Berlin Heidelberg,2009: 422-433.
[9]  HASHEMI A B, MEYBODI M R. A multi-role cellular PSO for dynamic environments[C]14th International CSI Computer Conference, CSICC 2009. Tehran: IEEE,2009: 412-417.
[10]  SHANNON C E. A mathematical theory of communication[ J ]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5: 3-55.
[11]  JURGEN B. Memory enhanced evolutionary algorithms for changing optimization problems[C]Proceedings of the 1999 Congress of Evolutionary Computation. Washington, D. C. : IEEE, 1999: 875-1882.
[12]  BLACKWELL T, BRANKE J. Multi-swarms, exclusion, and anti-convergence in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2006, 10:459-472.
[13]  BLACKWELL T, BRANKE J, LI X. Particle swarms for dynamic optimization problems[M]Swarm Intelligence. [S. l. ]: Springer Berlin Heideberg, 2008: 193-217.
[14]  KAMOSI M, HASHEMI A B, MEYBODI M R. A new particle swarm optimization algorithm for dynamic environments[M] Swarm, Evolutionary, and Memetic Computing. Chennai: Springer Berlin Heidelberg, 2010:129-138.
[15]  KAMOSI M, HASHEMI A B, MEYBODI M R. A hibernating multi-swarm optimization algorithm for dynamic environments [ C ] Proceedings of World Congress on Nature and Biologically Inspired Computing
[16]  (NaBIC2010). Fukuoca: IEEE, 2010: 370-376.
[17]  REZAZADEH I, MEYBODI M R, NAEBI A. Adaptive particle swarm optimization algorithm for dynamic environments [ M] Advances in Swarm Intelligence. Chongqing: Springer Berlin Heidelberg, 2011: 120-129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133