全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半平面上的非等熵MHD方程组的不可压极限

Keywords: 小马赫数,非等熵MHD方程组,边界区域

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究在半平面上速度场具有Dirichlet条件,且磁场具有完美物理传导条件的非等熵的MHD方程组的不可压极限,采用了能量方法和一般正则性理论,并且通过Schauder不动点理论证明解的存在性,通过Gronwall不等式证明了解的唯一性,这样在具有好始值的前提下,在小时间区间上建立了不依赖于小马赫数ε∈(0,1的一致估计,其中也包括了在边界法线方向上的速度的高阶导数的估计.最终得出了MHD方程组的局部解的存在性和唯一性.

References

[1]  ZAJACZKOWSKI W M. On nonstationary motion of a compressible baratropic viscous fluids with boundary slip condition[J]. Journal Application Analysis, 1998, 4: 167-204.
[2]  ALAZARD T. Low Mach number limit of the full Navier-Stokes equations [J]. Arch Ration Mech Anal, 2006, 180: 1-73.
[3]  BRESCHB D, DESJARDINS B, GRENIER E, et al. Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case [J]. Stud Appl Math, 2002, 109: 125-149.
[4]  DANCHIN R. Low Mach number limit for viscous compressible flows[J]. Math Model Numer Anal, 2005, 39 : 459-475.
[5]  FAN Ji-shan, GAO Hong-jun, GUO Bo-ling. Low Mach number limit of the Compressible magnetohydrodynamic equations with zero thermal conductivity coefficient[J]. Mathematical Methods in the Applied Sciences, 2011, 11: 2182-2188.
[6]  JIANG Song, JU Qiang-chang, LI Fu-cai. Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions[J]. Comm Math Phys, 2010, 297: 371-400.
[7]  JIANG Song, JU Qiang-chang, LI Fu-cai. Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations[J]. Nonlinearity, 2012, 25: 1351-1365.
[8]  DOU Chang-sheng, JU Qiang-chang. Low Mach number limit for the compressible magnetohydrodynamic equation in a bounded domain for all time[J]. Commun Math Sci, 2014, 12: 661-679.
[9]  WANG Shu, XU Zi-li. Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain[J]. Nonlinear Analysis, 2014, 105: 102-119.
[10]  KIM H, LEE J. The incompressible limits of viscous polytropic fluids with zero thermal conductivity coefficient[J]. Comm PDE, 2005, 30: 1169-1189.
[11]  GALDI G P. An introduction to the mathematical theory of the Navier-Stokes equations: linearized steady problems[M]. New York: Springer-Verlag, 1994: 26-32.
[12]  VALLI A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method[J]. Ann Scuola Norm Sup Pisa CI Sci, 1983, 10(4): 607-647.
[13]  VALLI A, ZAJACZKOWSKI W M. Navier-Stokes equations for the compressible fluids: global existence and qualitative properties of the solutions in the general case[J]. Comm Math Phys, 1986, 103: 259-296.
[14]  JIANG Song, OU Yao-bin. Incompressiblelimit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains[J]. J Math Pures Appl, 2011, 96: 1-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133