ZAJACZKOWSKI W M. On nonstationary motion of a compressible baratropic viscous fluids with boundary slip condition[J]. Journal Application Analysis, 1998, 4: 167-204.
[2]
ALAZARD T. Low Mach number limit of the full Navier-Stokes equations [J]. Arch Ration Mech Anal, 2006, 180: 1-73.
[3]
BRESCHB D, DESJARDINS B, GRENIER E, et al. Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case [J]. Stud Appl Math, 2002, 109: 125-149.
[4]
DANCHIN R. Low Mach number limit for viscous compressible flows[J]. Math Model Numer Anal, 2005, 39 : 459-475.
[5]
FAN Ji-shan, GAO Hong-jun, GUO Bo-ling. Low Mach number limit of the Compressible magnetohydrodynamic equations with zero thermal conductivity coefficient[J]. Mathematical Methods in the Applied Sciences, 2011, 11: 2182-2188.
[6]
JIANG Song, JU Qiang-chang, LI Fu-cai. Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions[J]. Comm Math Phys, 2010, 297: 371-400.
[7]
JIANG Song, JU Qiang-chang, LI Fu-cai. Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations[J]. Nonlinearity, 2012, 25: 1351-1365.
[8]
DOU Chang-sheng, JU Qiang-chang. Low Mach number limit for the compressible magnetohydrodynamic equation in a bounded domain for all time[J]. Commun Math Sci, 2014, 12: 661-679.
[9]
WANG Shu, XU Zi-li. Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain[J]. Nonlinear Analysis, 2014, 105: 102-119.
[10]
KIM H, LEE J. The incompressible limits of viscous polytropic fluids with zero thermal conductivity coefficient[J]. Comm PDE, 2005, 30: 1169-1189.
[11]
GALDI G P. An introduction to the mathematical theory of the Navier-Stokes equations: linearized steady problems[M]. New York: Springer-Verlag, 1994: 26-32.
[12]
VALLI A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method[J]. Ann Scuola Norm Sup Pisa CI Sci, 1983, 10(4): 607-647.
[13]
VALLI A, ZAJACZKOWSKI W M. Navier-Stokes equations for the compressible fluids: global existence and qualitative properties of the solutions in the general case[J]. Comm Math Phys, 1986, 103: 259-296.
[14]
JIANG Song, OU Yao-bin. Incompressiblelimit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains[J]. J Math Pures Appl, 2011, 96: 1-28.