LEE E J,KIM C H,LEE S H.Life expectancy estimate with bivariate Weibull distribution using archimedean copula[J].International Journal of Biometrics and Bioinformatics,2011,5(3):149-161.
[2]
TARUMOTO M H,WADA C Y.A bivariate Weibull and its competing risks models[J].Brazilian Journal of Probability and Statistics,2001,15:221-239.
[3]
RAO C R.Information and accuracy attainable in the estimation of statistical parameters[J].Bull Calcutta Math Soc,1945,37:81-91.
[4]
EFRON B.Defining the curvature of a statistical problem[J].The Annals of Statistics,1975,3(6):1189-1242.
[5]
AMARI S.Differential geometrical methods in statistics[M].Berlin:Springer-Verlag,1985:11-96.
[6]
AMARI S,NAGAOKA H.Methods of information geometry[M].New York:Oxford University Press,2000:1-81.
[7]
SUN Hua-fei,PENG Lin-yu,ZHANG Zhen-ning.Information geometry and its applications[J].Advances in Mathematics,2011,40(3):257-269.(in Chinese)
[8]
ZHANG Zhen-ning,SUN Hua-fei,ZHONG Feng-wei.Information geometry of the power inverse Gaussian distribution[J].Applied Sciences,2007,9:194-203.
[9]
DODSON C T,MATSUZOE H.An affine embedding of the gamma manifold[J].Applied Sciences,2003,5(1):1-6.
[10]
PENG Lin-yu,SUN Hua-fei,SUN Dan-di,et al.The geometric structures and instability of entropic dynamical models[J].Advances in Mathematics,2011,227(1):459-471.
[11]
DO CARMO M P.Riemannian geometry[M].Boston:Birkhuser,1992:110-116.
CASETTI L,CLEMENTI C,PETTINI M.Riemannian theory of Hamiltonian chaos and Lyapunov exponents[J].Phys Rev E,1996,54(6):5469-5984.
[14]
CASETTI L,PETTINI M,COHEN E G D.Geometric approach to Hamiltonian dynamics and statistical mechanics[J].Phys Rep A,2000,337(3):237-341.
[15]
PENG Lin-yu,SUN Hua-fei,XU Guo-quan.Information geometric characterization of the complexity of fractional Brownian motions[J].Journal of Mathematical Physics,2012,53(12):123305.