全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二元Weibull统计流形的对偶几何结构及其不稳定性

Keywords: 二元Weibull分布,α-几何结构,对偶平坦,Jacobi向量场,Lyapunov指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究二元Weibull分布的稳定性,从信息几何的角度将二元Weibull分布的全体所构成的集合作为二元Weibull统计流形,通过求得流形的Fisher信息矩阵、α-联络、α-曲率张量以及α-数量曲率,得到二元Weibull统计流形的对偶几何结构,进而得到当α=±1时,二元Weibull统计流形是对偶平坦的,并且是截面曲率为0的常截面曲率空间.最后,借助于对偶平坦几何结构,利用Jacobi向量场得到了二元Weibull统计流形的不稳定性.

References

[1]  LEE E J,KIM C H,LEE S H.Life expectancy estimate with bivariate Weibull distribution using archimedean copula[J].International Journal of Biometrics and Bioinformatics,2011,5(3):149-161.
[2]  TARUMOTO M H,WADA C Y.A bivariate Weibull and its competing risks models[J].Brazilian Journal of Probability and Statistics,2001,15:221-239.
[3]  RAO C R.Information and accuracy attainable in the estimation of statistical parameters[J].Bull Calcutta Math Soc,1945,37:81-91.
[4]  EFRON B.Defining the curvature of a statistical problem[J].The Annals of Statistics,1975,3(6):1189-1242.
[5]  AMARI S.Differential geometrical methods in statistics[M].Berlin:Springer-Verlag,1985:11-96.
[6]  AMARI S,NAGAOKA H.Methods of information geometry[M].New York:Oxford University Press,2000:1-81.
[7]  SUN Hua-fei,PENG Lin-yu,ZHANG Zhen-ning.Information geometry and its applications[J].Advances in Mathematics,2011,40(3):257-269.(in Chinese)
[8]  ZHANG Zhen-ning,SUN Hua-fei,ZHONG Feng-wei.Information geometry of the power inverse Gaussian distribution[J].Applied Sciences,2007,9:194-203.
[9]  DODSON C T,MATSUZOE H.An affine embedding of the gamma manifold[J].Applied Sciences,2003,5(1):1-6.
[10]  PENG Lin-yu,SUN Hua-fei,SUN Dan-di,et al.The geometric structures and instability of entropic dynamical models[J].Advances in Mathematics,2011,227(1):459-471.
[11]  DO CARMO M P.Riemannian geometry[M].Boston:Birkhuser,1992:110-116.
[12]  PETERSEN P.Riemannian Geometry[M].2nd ed.New York:Springer,2006:32-41.
[13]  CASETTI L,CLEMENTI C,PETTINI M.Riemannian theory of Hamiltonian chaos and Lyapunov exponents[J].Phys Rev E,1996,54(6):5469-5984.
[14]  CASETTI L,PETTINI M,COHEN E G D.Geometric approach to Hamiltonian dynamics and statistical mechanics[J].Phys Rep A,2000,337(3):237-341.
[15]  PENG Lin-yu,SUN Hua-fei,XU Guo-quan.Information geometric characterization of the complexity of fractional Brownian motions[J].Journal of Mathematical Physics,2012,53(12):123305.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133