全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

使用交叉距离最小化算法设计支持向量机

Keywords: 交叉距离最小化算法,核函数,最近点算法,支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对核方法在处理非线性可分数据问题上的优势,将一种硬间隔无核支持向量机——交叉距离最小化算法(crossdistanceminimizationalgorithm,CDMA)推广到带核的版本,称为带核的交叉距离最小化算法(kernelcrossdistanceminimizationalgorithm,KCDMA).利用乘子将交叉距离最小化算法表示为内积的形式,然后使用核函数代替内积运算,并且引入二次惩罚,这样扩展后的模型能处理非线性可分数据集,并且允许一定的分类偏差.实验结果表明,与一些经典的支持向量机方法相比,该方法具有明显的竞争力.

References

[1]  WEBB D.Efficient piecewise linear classifiers and applications[D].Ballarat:Graduate School of Information Technology and Mathematical Sciences,University of Ballarat,2010.
[2]  ERTEKIN S,BOTTOU L,GILES C L.Nonconvex online support vector machines[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,22(2):368-381.
[3]  CORTES C,VAPNIK V.Support vector networks[J].Machine Learning,1995,20:273-297.
[4]  VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:123-179.
[5]  PANG S,KIM D,BANG S Y.Face membership authentication using SVM classification tree generated by membership-based LLE data partition[J].IEEE Transactions on Neural Networks,2005,16(2):436-446.
[6]  LIU Y,CHEN Y.Face recognition using total margin-based adaptive fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2007,18(1):178-192.
[7]  SHIH P,LIU C.Face detection using discriminating feature analysis and support vector machine[J].Pattern Recognition,2006,39(2):260-276.
[8]  KIM S,PARK Y,TOH K,et al.SVM-based feature extraction for face recognition[J].Pattern Recognition,2010,43(8):2871-2881.
[9]  CAO X,QIAO H.A low-cost pedestrian detection system with a single optical camera[J].IEEE Transactions on Intelligent Transportation Systems,2008,9(1):58-67.
[10]  LABUSCH K,MARTINETZ T.Simple method for highperformance digit recognition based on sparse coding[J].IEEE Transactions on Neural Networks,2008,19(11):1985-1989.
[11]  KIM K,JUNG K,PARK S,et al.Support vector machine-based text detection in digital video[J].Pattern Recognition,2001,34(2):527-529.
[12]  MITRA V,WANG C,BANERJEE S.A neuro-SVM model for text classification using latent semantic indexing[C]∥Proceedings of International Joint Conference on Neural Networks.Montreal:IEEE,2005:564-569.
[13]  LI Yu-jian,LIU Bo,YANG Xin-wu,et al.Multiconlitron:a general piecewise linear classifier[J].IEEE Transactions on Neural Networks,2011,22(2):276-289.
[14]  KEERTHI S S,SHEVADE S K,BHATTACHARYYA C,et al.A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Transactions on Neural Networks,2000,11(1):124-136.
[15]  GILBERT E G.Minimizing the quadratic form on a convex set[J].SIAM Journal on Control,1966,4:61-79.
[16]  MITCHELL B F,DEMYANOV V F,MALOZEMOV V N.Finding the point of a polyhedron closest to the origin[J].SIAM Journal on Control,1974,12:19-26.
[17]  FRANC V,HLAVAC V.An iterative algorithm learning the maximal margin classifier[J].Pattern Recognition,2003,36(9):1985-1996.
[18]  CHANG C C,LIN C J.Libsvm:a library for support vector machines[CP/OL].[2013-02-05].http:∥www.csie.ntu.edu.tw/cjlin/libsvm.
[19]  FRANK A,ASUNCION A.UCI machine learning repository[DB/OL].[2013-02-05].http:∥archive.ics.uci.edu/ml.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133