全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

考虑螺旋桨滑流影响的机翼气动优化设计

DOI: 10.7527/S1000-6893.2014.0044, PP. 2910-2920

Keywords: 滑流影响,自由变形技术,径向基函数,多重参考坐标系,Kriging代理模型,粒子群优化算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

涡桨飞机的机翼、短舱等部件在滑流作用下周围的流场特性与无滑流状态下截然不同.所以,应该在涡桨飞机的机翼气动设计过程中考虑螺旋桨滑流的影响,从而使得机翼在真实飞行时滑流作用下表现出更好的气动特性.采用基于雷诺平均Navier-Stokes方程的多重参考坐标系(MRF)方法对螺旋桨滑流进行高精度准定常数值模拟,通过自由变形(FFD)技术实现螺旋桨飞机机翼的参数化构建,应用径向基函数(RBF)插值的动网格技术进行网格自动生成,获得样本机翼在滑流影响下的气动数据后,建立目标函数和状态函数的Kriging代理模型,结合随机权重粒子群优化(PSO)算法、Kriging代理模型和对应的EI(ExpectedImprovement)函数加点准则进行加样本点以及代理模型重建,从而建立滑流影响下机翼气动优化设计系统.使用该系统对某型螺旋桨飞机进行了滑流影响下的优化设计,结果表明,优化后的构型机翼和短舱在巡航状态下减阻达3.98counts,升阻比提高了3.325%.因此,建立的考虑滑流影响下的机翼优化设计方法是可行的.

References

[1]  Liu P Q. The theory and application of air propeller[M]. Beijing: Beihang University Press, 2006: 55-82. (in Chinese) 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 55-82.
[2]  Li B, Liang D W, Huang G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 846-852.(in Chinese) 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 846-852.
[3]  Duan Y Q, Shi A M. A new and effective actuator disk model approach for the simulation of propeller slipstream [J]. Journal of Northwestern Polytechnical University, 2012, 30(6): 842-846.(in Chinese) 段义乾, 史爱明. 一种新型的螺旋桨滑流激励盘模型的研究方法[J]. 西北工业大学学报, 2012, 30(6): 842-846.
[4]  Wetmoreland W S, Tramel R W, Barber J. Modeling propeller flow-fields using CFD, AIAA-2008-0402[R]. Reston: AIAA, 2008.
[5]  Bryan F, Ramesh A. CFD analysis of open rotor engines using an actuator disk model, AIAA-2014-0408[R].Reston: AIAA, 2014.
[6]  Xia Z F, Yang Y. Unsteady numerical simulation interaction effects of propeller and wing [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1195-1201.(in Chinese) 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7): 1195-1201.
[7]  Stuermer A W. Unsteady CFD simulations of propeller installation effects Sacramento California, AIAA-2006-4969[R]. Reston: AIAA, 2006.
[8]  Yang A M, Liu J H, Weng P F. Navier-Stokes computation about a helicopter rotor in hover using chimera grids and multi-grid acceleration [J]. Acta Aerodynamica Sinica, 2009, 27(1): 6-10. (in Chinese) 杨爱明, 刘金花, 翁培奋. 基于重叠网格技术和多重网格算法的悬停旋翼粘性绕流数值模拟[J]. 空气动力学学报, 2009, 27(1): 6-10.
[9]  Wen Q, Liang D W, Huang G P. Construction of MUSCL scheme in moving reference frame [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 59-62.(in Chinese) 温泉, 梁德旺, 黄国平. 旋转坐标系下三维MUSCL 格式的构成[J]. 南京航空航天大学学报, 2003, 35(1): 59-62.
[10]  Müller L, Ko?ulovi'c D, Hepperle M. Installation effects of a propeller over a wing with internally blown flap, AIAA-2012-3335[R]. Reston: AIAA, 2012.
[11]  Nils B, Rolf R, Carsten L, et al. Aerodynamic effects of propeller slipstream on a wing with circulation control by internally blown flaps, AIAA-2014-0407[R]. Reston: AIAA, 2014.
[12]  Zhu X X. The molding technology of free curve and surface[M]. Beijing: Science Press, 2000: 66-112. (in Chinese) 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 66-112.
[13]  Huang J T, Gao Z H, Bai J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 37-45.(in Chinese) 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼梢小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1): 37-45.
[14]  Yan C. Computational fluid dynamics and its application[M]. Beijing: Beihang University Press, 2006: 17-243. (in Chinese) 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006: 17-243.
[15]  Boer A D, Schoot V D, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers and Structures 2007, 85(11-14): 784-795.
[16]  Allen C B, Rendall T C S. Unified approach to CFD/CSD interpolation and mesh motion using radial basis functions, AIAA-2007-3804[R]. Reston: AIAA, 2007.
[17]  Bai J Q, Liu N, Qiu Y S, et al. Optimization of multi-foil basing on RBF moving grid method and modified particle swarm optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2701-2715.(in Chinese) 白俊强, 刘南, 邱亚松, 等. 基于RBF动网格方法和改进粒子群优化算法的多段翼型优化[J]. 航空学报, 2013, 34(12): 2701-2715.
[18]  Noel C. The origins of Kriging[J]. Journal of Mathematical Geology, 1990, 22(3): 239-252.
[19]  Donald R J, Matthias S, William J W. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492.
[20]  Donald R J. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383.
[21]  Martin J D. Robust kriging models, AIAA-2010-2854[R]. Reston: AIAA, 2010.
[22]  Yang H, Song W P, Han Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226.(in Chinese) 杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218 -1226.
[23]  Wang W B. The study and application of particle swarm optimization algorithm[D]. Chengdu: Southwest Jiaotong University, 2005.(in Chinese) 王维博. 粒子群优化算法研究及其应用[D]. 成都: 西南交通大学, 2005.
[24]  Ji Z, Liao H L, Wu Q H. The algorithm and application of particle swarm[M]. Beijing: Science Press, 2008: 16-71. (in Chinese) 纪震, 廖惠连, 吴青华. 粒子群算法及应用[M]. 北京: 科学出版社, 2008: 16-71.
[25]  Moens F, Gardarein P. Numerical simulation of the propeller/wing interaction for transport aircraft, AIAA-2001-2404[R]. Reston: AIAA, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133