全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2014 

梯形翼高升力构型的数值模拟技术

DOI: 10.7527/S1000-6893.2014.0095, PP. 3213-3221

Keywords: RANS,梯形翼,流场模拟,网格密度,层流湍流转捩,气动特性,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于雷诺平均Navier-Stokes(RANS)方程和结构网格技术,采用亚跨超声速平台(TRIP3.0),数值模拟了美国国家航空航天局(NASA)梯形翼构型.研究了控制方程、网格密度、流动转捩和初始条件等不同影响因素对气动特性的影响.风洞试验是2002年在NASALangley14ft22ft亚声速风洞中完成的,试验结果包括了基本气动力和力矩、表面压力系数和边界层速度型分布.计算结果与试验数据的比较表明求解完全的RANS方程,提高了翼梢涡的模拟精度;网格密度主要影响翼梢涡的强度;转捩模型提高了边界层的模拟精度,进而提高了升力系数、俯仰力矩系数的模拟精度;最大升力系数及失速迎角对初始条件具有依赖性.

References

[1]  Johnson P L, Jones K M, Madson M D. Experimental investigation of a simplified 3D high lift configuration in support of CFD validation, AIAA-2000-4217[R]. Reston: AIAA, 2000.
[2]  Rogers S E, Roth K, Nash S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10): 1884-1892.
[3]  van Leer B. Towards the ultimate conservative differences scheme[J]. Journal of Computational Physics, 1997, 135: 229-248.
[4]  Menter F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[5]  Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: part I-model formulation[J]. Journal of Turbomachinery, 2004, 128(3): 413-422.
[6]  Zhang Y L, Wang G X, Meng D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3): 295-301. (in Chinese) 张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3): 295-301.
[7]  Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801. (in Chinese) 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
[8]  Sclafani A J, Slotnick J P, Vassberg J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model, AIAA-2012-2919[R]. Reston: AIAA, 2012.
[9]  Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180.
[10]  Zhu Z Q, Chen Y C, Wu Z C. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 257-262. (in Chinese) 朱自强, 陈迎春, 吴宗成. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3): 257-262.
[11]  Zhang W S, Chen H X, Zhang Y F,et al. Nacelle strake's aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85. (in Chinese) 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.
[12]  Cui Z, Han D, Li J B. Study on aerodynamic characteristics of airfoil with gurney flaps under high subsonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2277-2286. (in Chinese) 崔钊, 韩东, 李建波. 翼型加装格尼襟翼的高亚声速气动特性研究[J]. 航空学报, 2013, 34(10): 2277-2286.
[13]  Rogers S E, Roth K, Nash S M. CFD validation of high-lift flows with significant wind-tunnel effects, AIAA-2000-4218[R]. Reston: AIAA, 2000.
[14]  van der Burg J W, von Geyr H F, Heinrich R, et al. Geometrical model installation and deformation effects in the European project EUROLIFT II, AIAA-2007-4297[R]. Reston: AIAA, 2007.
[15]  Heinz H. Overview about the European high lift research programme EUROLIFT, AIAA-2004-0767[R]. Reston: AIAA, 2004.
[16]  Rudnik R, von Geyr H F. The European high lift project EUROLIFT II-objectives, approach, and structure, AIAA-2007-4296[R]. Reston: AIAA, 2007.
[17]  Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0862[R]. Reston: AIAA, 2011.
[18]  Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0939[R]. Reston: AIAA, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133