全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
航空学报  2013 

捕获非合作目标后航天器的自主稳定技术研究

DOI: 10.7527/S1000-6893.2013.0114, PP. 1520-1530

Keywords: 航天器,非合作目标,自主稳定,辨识,非线性规划方法,滑模变结构控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

捕获非合作目标后航天器质量特性发生突变,这大大地增加了系统的不确定性,控制不当容易导致失稳。为避免控制过程中航天器出现较大系统干扰问题,提出了先识别捕获后的系统质量特性,而后合理摆放非合作目标的自主稳定策略。首先,对航天器捕获过程和自主稳定策略进行了描述;其次,依据动量矩定理建立了非合作目标与航天器组合系统的数学模型,推导了非合作目标位置与质量特性之间的关系;然后,基于航天器数学模型和姿态测量信息,采用非线性规划方法对质量特性进行了辨识;最后,利用滑模变结构理论设计了非合作目标的控制回路,采用Lyapunov理论对系统的稳定性进行了分析。仿真结果表明本文提出的自主配平策略响应快、精度高,适合在轨服务。

References

[1]  Chen T, Xu S J. A fuzzy controller for terminal approach of autonomous rendezvous and docking with non-cooperative target. Journal of Astronautics, 2006,27(3):416-421. (in Chinese) 陈统, 徐世杰. 非合作目式自主交会对接的终端接近模糊控制. 宇航学报, 2006, 27(3): 416-421.
[2]  Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA-TP-1998-208528, 1998.
[3]  Regan F J, Kavetsky R A. Add 2 on controller for ballistic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880.
[4]  Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10(8): 1031-1015.
[5]  Wingo D R. Orbital recovery’s responsive commercial space tug for life extension mission. AIAA-2004-3004, 2004.
[6]  Polites M E. An assessment of the technology of automated rendezvous and capture in space. NASA-TP-1998-208528, 1998.
[7]  Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.
[8]  Cai H L, Gao Y M, Bing Q J, et al. The research status and key technology analysis of foreign non-cooperative target in space capture system. Journal of the Academy of Equipment Command & Technology, 2010, 21(6):71-77.(in Chinese) 蔡洪亮, 高永明, 邴启军, 等. 国外空间非合作目标抓捕系统研究现状与关键技术分析. 装备指挥技术学院学报, 2010, 21(6): 71-77.
[9]  Regan F J, Kavetsky R A. Add 2 on controller for ballistic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880.
[10]  Wingo D R. Orbital recovery’s responsive commercial space tug for life extension mission. AIAA-2004-3004, 2004.
[11]  Childs D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9): 11-15.
[12]  Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10(8): 1031-1015.
[13]  Childs D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9): 11-15.
[14]  Kunciw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12(5):45-51.
[15]  Kunciw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12(5):45-51.
[16]  Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10(5): 41-45.
[17]  Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10(5): 41-45.
[18]  Jae J K, Brij N A. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1005-1017.
[19]  Jae J K, Brij N A. Automatic mass balancing of air-bearing-based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1005-1017.
[20]  Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.
[21]  Small D, Zajac F. A linearized analysis and design of an automatic balancing system for the three axis air bearing table. NASA TM-X-50177, 1963.
[22]  Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.
[23]  Peck M A, Miller L, Cavender A R, et al. Air-bearing-based testbed for momentum control systems and spacecraft line of sight. AAS 2003-127, 2003.
[24]  Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.
[25]  Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.
[26]  Wilson E, Mah R W, Guerrero M C, et al. Imbalance identification and compensation for an airborne telescope. Proceedings of the 1998 IEEE. Piscataway: American Control Conference, 1998: 856-860.
[27]  Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.
[28]  Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control. IEEE International Conference on Intelligent Robots and Systems, 2004: 80-88.
[29]  SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.
[30]  Bossea A B, Barnds W J, Brown M A, et al. SUMO: Spacecraft for the universal modification of orbits. The SPIE Defense and Security Symposium. Bellingham: SPIE, 2004: 36-46.
[31]  SBischof B, Kerstein L, Starke J, et al. ROGER-Robotic geostationary orbit restorer. AIAA 54th International Astronautical Congress of the International Astronautical Federation, 2003: 1-9.
[32]  Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.
[33]  Hirzinger G, Landzettel K, Brunner B, et al. DLRS robotics technologies for on orbit servicing. Advanced Robotics, 2004, 1(18): 3-11.
[34]  Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11
[35]  Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective. ISAIRAS 2005 Conference. Germany: ISAIRAS, 2005: 3-11
[36]  Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[37]  Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.
[38]  Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[39]  Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.
[40]  Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.
[41]  Schwartz J L, Hall C D. System identification of a spherical air-bearing spacecraft simulator. AAS-2004-122, 2004.
[42]  Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.
[43]  Kim J A, Acikmese A B, Shields J F. Spacecraft inertia estimation via constrained least squares. IEEE Aerospace Conference. Piscataway: IEEE, 2006.
[44]  Peck M A. Estimation of inertia parameters for gyrostats subject to gravity-gradient torques. AAS 2001-308, 2011.
[45]  Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.
[46]  Jung D, Tsiotras P. A 3-dof experimental test-bed for integrated attitude dynamics and control research. AIAA-2003-5331, 2003.
[47]  Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.
[48]  Wright S. Parameter estimation of a spacecraft simulator using parameter-adaptive control. Blacksburg: Aerospace and Ocean Engineering Department,Virginia Ploytechnic Institute and State University, 2006.
[49]  Li Z X, Li G F. Moving centroid reentry vehicle modeling and active disturbance rejection roll control. Acta Aeronautica et Astronautica Sinicia, 2012, 33(11): 2121-2129. (in Chinese) 李自行, 李高风. 移动质心再入飞行器建模及自抗扰滚动控制. 航空学报, 2012, 33(11): 2121-2129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133