全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

形变及冷却速率对热轧超高强汽车钢板中纳米析出的影响

DOI: 10.3724/SP.J.1037.2012.00082, PP. 621-628

Keywords: 纳米析出,冷却速率,形变,微合金钢,无析出带

Full-Text   Cite this paper   Add to My Lib

Abstract:

为精确控制热轧780MPa级Nb-Ti微合金化C-Mn钢中的纳米析出物(Nb,Ti)C,利用热力模拟实验技术,通过透射电镜观察及统计分析,研究形变及冷却速率对纳米析出的影响规律.结果表明,形变可显著地提高析出物形核率,并细化析出物平均直径;析出物数量随冷却速率的增大逐渐减小;既定的实验条件下,冷却速率达到15℃/s可完全抑制析出物在冷却过程中形核;随着冷却速率的增大,析出物的形核区间由奥氏体区形核向铁素体或贝氏区转变,析出物平均直径明显细化;在低冷却速率条件下的变形实验钢中,形变提高组织中的空位浓度,促进析出物空位形核的发生;晶界或亚晶界是过饱和空位的主要陷阱,但空位的扩散活性很高致使低冷却速率条件下晶界或亚晶界附近的空位浓度低于析出物形核的临界形核浓度,从而无法形核,形成晶界附近无析出带;无析出带宽度随冷却速率的增大而减小,这归因于空位扩散活力随冷却速率的增大而降低.

References

[1]  (康永林, 傅杰, 柳得橹, 于浩. 薄板坯连铸连轧钢的组织性能控制. 北京: 冶金工业出版社, 2006: 144)
[2]  Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 197
[3]  Porter D A, Easterlin K E. Phase Transformations in Metals and Alloys.New York: Van Nostrand Reinhold Company Ltd., 1981: 303
[4]  Takashi S, Shuji K, Sadao H, Akio S, Takao O, Kuniaki O. JFE Technol Rep, 2004; 2: 1
[5]  Jiao Z B, Liu J C. Mater China, 2011; 30: 6
[6]  (焦增宝, 刘锦川. 中国材料进展, 2011; 30: 6)
[7]  Kashima T, Muka Y. “R$\&$D” Kobe Steel Eng Rep, 2002; 52: 19
[8]  Tetsuo S, Yoshimasa F, Shinjiro K. JFE Technol Rep, 2004; 4: 25
[9]  Kazuhiro S, Yoshimasa F, Shinjiro K. JFE Technol Rep, 2007; 10: 19
[10]  Misra R D K, Nathani H, Hartmann J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[11]  Lu J X, Wang G D. Iron Steel, 2005; 40: 69
[12]  (陆匠心, 王国栋. 钢铁, 2005; 40: 69)
[13]  Sha Q Y, Li G Y, Yan P Y, Ao L G, Hao S. Mater China, 2011; 30: 23
[14]  (沙庆云, 李桂艳, 严平沅, 熬列格, 郝森. 中国材料进展, 2011; 30: 23)
[15]  Zhou J, Kang Y L, Mao X P, Li L J, Lin Z Y. Iron Steel, 2006; 41(Suppl.): 343
[16]  (周建, 康永林, 毛新平, 李烈军, 林振源. 钢铁, 2006; 41(增刊): 343)
[17]  Huang Q Y, Yan H W, Pan Y L, Yang J R. Min Metall, 2008; 53: 45
[18]  (黄庆渊, 颜鸿威, 潘永林, 杨哲人. 矿冶, 2008; 53: 45)
[19]  Chen C Y, Yen H W, Kao F H , Li W C, Huang C Y, Yang J R, Wang S H. Mater Sci Eng, 2009; A499: 162
[20]  Wang T P, Kao F H, Wang S H, Yang Z R, Huang C Y, Chen H R. Mater Lett, 2011; 65: 396
[21]  Wang X N, Du L X, Zhang H L, Di H S. J Iron Steel Res, 2011; 23: 45
[22]  (王晓南, 杜林秀, 张海仑, 邸洪双. 钢铁研究学报, 2011; 23: 45)
[23]  Wang X N, Du L X, Xie H, Di H S, Gu D H. Steel Res Int, 2011; 82: 1417
[24]  Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783
[25]  Jia Z, Misra R D K, O'Malley R, Jansto S J. Mater Sci Eng, 2011; A528: 7077
[26]  Xu G, Gan X L, Ma G J, Luo F, Zou H. Mater Des, 2010; 31: 2891
[27]  Niakan H, Najiafizadeh A. Mater Sci Eng, 2010; A527: 5410
[28]  Olasolo M, Uranga P, Rodriguez-Ibabe J M, Lopez B. Mater Sci Eng, 2011; A528: 2559
[29]  Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783
[30]  Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 145
[31]  (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)
[32]  He X L, Shang C J, Yang S W, Wang X M, Guo H. High Performance Low Carbon Bainite Steel. Beijing: Metallurgical Industry Press, 2008: 202
[33]  (贺信莱, 尚成嘉, 杨善武, 王学敏, 郭晖. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 202)
[34]  Manohar P A, Dunne D P, Chandar T, Killmore C R. ISIJ Int, 1996; 36: 194
[35]  Kang Y L, Fu J, Liu D L, Yu H.Control of Microstructure and Properties in Thin Slab Casting and Rolling Steel.Beijing: Metallurgical Industry Press, 2006: 144

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133