全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Ce-Cu共掺杂对SnO2薄膜光电特性的影响*

DOI: 10.3724/SP.J.1037.2013.00210, PP. 95-102

Keywords: Ce-Cu共掺杂SnO2,溶胶凝胶法,光电特性,第一性原理

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用溶胶凝胶法制备不同Ce含量的Ce-Cu共掺杂SnO2薄膜,通过实验及第一性原理计算研究了掺杂对SnO2微观结构及光电特性的影响.结果表明,掺杂后薄膜物相未发生较大变化,Cu,Ce均以替代Sn位形式掺入,形成,受主型缺陷.随Ce掺杂浓度增加,薄膜晶粒尺寸和光学带隙均减小,电阻率先减小后增大,Ce掺杂量影响薄膜内陷阱分布从而导致电阻发生改变.PL光谱测试发现,SnO2在390nm处出现紫外发光峰,主要与O空位有关,Ce3+的5d→4f跃迁在470nm处产生蓝光发光峰,且随掺杂浓度增加发光峰强度先增大后减小并发生红移.第一性原理计算表明,Cu3d态在价带顶上方产生受主能级,而Ce掺杂后使导带整体下移,光带隙减小,进而提高导电性.

References

[1]  Harrison P G, Willett M J. Nature, 1988; 332: 337
[2]  Dolbec R, Khakani M A, Serventi A M, Trudeau M, Saint-Jacques R G. Thin Solid Films, 2001; 419: 230
[3]  Ellmer K. Nat Photonics, 2012; 282: 809
[4]  Ji Z G, He Z J, Song Y L. Acta Phys Sin, 2003; 53: 4330(季振国, 何振杰, 宋永梁. 物理学报, 2003; 53: 4330)
[5]  Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y. Chin Phys, 2010; 19B: 047205
[6]  Rockenberger J, Zum Felde U, Tischer M, Troger L, Haase M, Weller H. J Chem Phys, 2000; 112: 4296
[7]  Jung Y S, Choi Y W, Lee D W. Thin Solid Films, 2003; 440: 278
[8]  Coey M D, Douvalis A P, Fitzgerald C B, Venkatesan M. Appl Phys Lett, 2004; 84: 1332
[9]  Ghimbeu C M, Lumbreras M, Schoonman J, Siadat M. Sensors, 2009; 9: 9122
[10]  Li Y F, Deng R, Tian Y F, Yao B, Wu T. Appl Phys Lett, 2012; 100: 172402
[11]  Chang S S, Jo M S. Ceram Int, 2007; 33: 511
[12]  Liu Y K, Tian Y, Feng Y J, Wu X W, Han X G. J Inorg Mater, 2008; 23: 891(刘延坤, 田 言, 冯玉杰, 武晓威, 韩霞光. 无机材料学报, 2008; 23: 891)
[13]  Chen S, Zhao X R, Xie H Y, Liu J M, Duan L B, Ba X J, Zhao J L. Appl Surf Sci, 2012; 258: 3255
[14]  Gu F, Wang S F, Lv M K, Zhou G J, Xu D, Yuan D R. J Phys Chem, 2012; 108B: 8119
[15]  Yamamoto T, Katayama Y H. Physica, 2001; 302B: 155
[16]  Han X B. Master Thesis, Northeastern University, Shenyang, 2010(韩晓波. 东北大学硕士学位论文, 沈阳, 2010)
[17]  Ghimbeu C M, Van Landschoot R C, Schoonman J, Lumbreras M, Antoncik J E. J Eur Ceram Soc, 2007; 27: 207
[18]  Lun N, Hu C X, Wu Y S. J Shandong Univ, 2003; 33: 605(伦 宁, 胡春霞, 吴佑实. 山东大学学报, 2003; 33: 605)
[19]  Coutts T J, Young D L, Li X, Mulligan W P, Wu X. J Vac Sci Technol, 2000; 18: 2646
[20]  Svance A, Antoncik J E. Phys Chem Solids, 1987; 48: 171
[21]  Oadri S B, Yang J P, Skelton E F, Ratna B R. Appl Phys Lett, 1997; 70: 1020
[22]  Williamson G K, Hall W H. Acta Metall, 1953; 1: 22
[23]  Kissine V V, Voroshilov S A, Sysoev V V. Thin Solid Films, 1999; 384: 304
[24]  Liu S X, Liu H. The Basis and Application of Photocatalysis and Photoelectrocatalysis. Beijing: Chemical Industry Press, 2006: 21(刘守新, 刘 鸿.光催化及光电催化基础与应用. 北京: 化学工业出版社, 2006: 21)
[25]  Yan J K, Gan G Y, Chen H F, Zhang X W, Sun J L. Semiconductor Technol, 2007; 32: 109(严继康, 甘国友, 陈海芳, 张小文, 孙加林. 半导体技术, 2007; 32: 109)
[26]  Terrier C, Chatelon J P, Roger J A. Thin Solid Films, 2007; 295: 95
[27]  Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan D X, Shen D Z. Appl Phys Lett, 2007; 97: 222101
[28]  Kim T W, Lee D U, Yoon Y S. J Appl Phys, 2000; 88: 3759
[29]  Peng Z J, Yang Y Y, Wang C B, Fu Z Q. Acta Metall Sin, 2008; 10: 1265 (彭志坚, 杨义勇, 王成彪, 付志强. 金属学报, 2008; 10: 1265)
[30]  Dexter D L, Schulman J H. J Chem Phys, 1954; 22: 1063
[31]  Cheng B C, Xiao Y H, Wu G S, Zhang L D. Adv Funct Mater, 2004; 14: 913
[32]  Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J. Appl Phys Lett, 2008; 92: 200110
[33]  Oduor A O, Gould R D. Thin Solid films, 1998; 317: 409
[34]  Burrows P E, Shen Z, Bulovic V, McCarty D M, Forrest S R, Cronin J A, Thompson M E. J Appl Phys, 1996; 79: 7991
[35]  Talin A A, Leonard F, Swartzentruber B S, Wang X, Hersee S D. Phys Rev Lett, 2008; 101: 076802

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133