全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

感应回火对1000MPa级高强度低合金钢碳化物析出行为及韧性的影响

DOI: 10.11900/0412.1961.2014.00306, PP. 1413-1420

Keywords: 高强度低合金钢,感应回火,韧性,纳米尺度碳化物

Full-Text   Cite this paper   Add to My Lib

Abstract:

对比研究了电磁感应及传统箱式炉2种不同回火加热方式对1000MPa级别高强度低合金钢淬火后组织中碳化物的尺寸、形貌、分布及其对力学性能的影响.结果表明,实验钢淬火后组织包括下贝氏体及板条马氏体.2种加热方式回火后,对于下贝氏体组织,随着回火温度由400℃升高至550℃,碳化物由针状向短棒状转变.其中,经550℃传统加热回火后,贝氏体内部碳化物长轴尺寸约为200nm,而经该温度电磁感应加热回火后其长轴尺寸约为60nm.对于板条马氏体组织,经传统加热回火后,碳化物主要沿着板条边界连串析出;电磁感应加热回火后,马氏体板条中析出的碳化物在板条内部及边界均匀弥散分布.经550℃传统方式回火后,马氏体中的碳化物尺寸约为200nm,而电磁感应回火的碳化物尺寸均小于100nm.经过不同加热方式回火后,实验钢的硬度差别不显著,随着回火温度升高,2种加热方式回火试样冲击功均升高,但感应加热回火后冲击功升高更为显著,实验钢经550℃电磁感应加热回火后-20℃冲击功达到133J,是传统加热回火工艺的4.5倍,实现了1000MPa级高强度低合金钢良好的强韧化组合.

References

[1]  Akihide N, Takayuki I, Tadashi O. JFE Tech Rep, 2008; 6: 13
[2]  Li X C, Xie Z J, Wang X L, Wang X M, Shang C J. Acta Metall Sin, 2013; 49: 167 (李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 金属学报, 2013; 49: 167)
[3]  Barani A A, Li F, Romano P, Ponge D, Raabe D. Mater Sci Eng, 2007; A43: 138
[4]  Hahn G T. Metall Trans, 1984; 15A: 947
[5]  Furuhara T, Kobayashi K, Maki T. ISIJ Int, 2004; 44: 1937
[6]  Xie Z J, Fang Y P, Han G, Guo H, Misra R D K, Shang C J. Mater Sci Eng, 2014; A618: 112
[7]  Nam W J, Lee C S, Ban D Y. Mater Sci Eng, 2000; A289: 8
[8]  Won J N, Dae S K, Soon T A. J Mater Sci Lett, 2003; 38: 3611
[9]  Park J S, Lee Y K. Scr Mater, 2007; 57: 109
[10]  Revilla C, Uranga P, Lopez B, Rodriguez-Ibabe J M. In: Bai D Q ed., Proc Materials Science and Technology Conference, Cleveland: Steel Product Metallurgy and Applications, 2012: 1069
[11]  Lee J B, Kang N, Park J T, Ahn S T, Park Y D, Choi D, Kim K R, Cho K M. Mater Chem Phys, 2011; 129: 365
[12]  Soon T A, Dae S K, Won J N. J Mater Process Technol, 2005; 160: 54
[13]  Kawasaki K, Chiba T, Yamazaki T. Tetsu Hagané, 1988; 74: 334 (川嵜一博, 千葉貴世, 山崎隆雄. 鉄と鋼, 1988; 74: 334)
[14]  Yusa S, Hara T, Tsuzaki K, Takahashi T. Mater Sci Eng, 1999; A273: 462
[15]  Ahn S T, Cho K M, Lee S L, Kor J. Inst Met Mater, 2002; 40: 252
[16]  Reviall C, López B, Rodriguez-Ibabe J M. Mater Des, 2014; 62: 296
[17]  Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 226 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 226)
[18]  Yang S W, Shang C J, He X L. Int J Miner Met Mater, 2001; 8: 119
[19]  Yong Q L, Chen M X, Pei H Z, Pan L, Zhou X L, Yang T W, Zhong W, Hao J Y. J Iron Steel Res, 2006; 18(3): 30 (雍岐龙, 陈明昕, 裴和中, 潘 俐, 周晓玲, 杨天武, 钟 卫, 郝建英. 钢铁研究学报, 2006; 18(3): 30)
[20]  Xu Y B, Yu Y M, Wu D, Wang G D. Chin J Mater Res, 2006; 20: 104 (许云波, 于永梅, 吴 迪, 王国栋. 材料研究学报, 2006; 20: 104)
[21]  Liu Q D, Chu Y L, Wang Z M, Liu W Q, Zhou B X. Acta Metall Sin, 2008; 44: 1281 (刘庆冬, 褚于良, 王泽民, 刘文庆, 周邦新. 金属学报, 2008; 44:1281)
[22]  Liu Q D, Liu W Q, Wang Z M, Zhou B X. Acta Metall Sin, 2009; 45: 1281 (刘庆冬, 刘文庆, 王泽民, 周邦新. 金属学报, 2009; 45: 1281)
[23]  Nam W J, Kim D S. J Mater Sci, 2003; 38: 3611
[24]  Hayakawa M, Matsuoka S, Tsuzaki K, Hanada H, Sugisaki M. Scr Mater, 2002; 47: 655
[25]  Bowen P, Druce S G, Knott J F. Acta Metall, 1987; 35: 1735
[26]  Chen Z Z, Ma Y L, Xing S Q, Feng D C, Li H Q. J Inn Mong Univ Sci Technol, 2010; 29: 123 (陈正宗, 麻永林, 邢淑清, 冯佃臣, 李慧琴. 内蒙古科技大学学报, 2010; 29: 123)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133