全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于概率预测的储能系统辅助风电场爬坡率控制

DOI: 10.13336/j.1003-6520.hve.2015.10.007, PP. 3233-3239

Keywords: 爬坡率控制,概率预测,储能,Gaussian过程回归,风电场,自相关函数,相空间重构

Full-Text   Cite this paper   Add to My Lib

Abstract:

大规模风电接入后,风电场的爬坡率控制对电网稳定运行有着重要意义。为此提出了基于概率预测的储能系统辅助风电场爬坡率控制方法。利用Gaussian过程回归预测对下一时段风电场输出功率进行预测,得到风电场的预测爬坡率,当预测爬坡率超出限定要求时,通过储能充放电做出补偿。基于某风电场的历史出力数据进行了案例计算,结果表明,基于Gaussian回归的单步预测精度可满足风电场爬坡率控制的要求。考虑储能充放电容量限制后,储能可减少风电场50%以上的爬坡事件。此工作为储能辅助风电场爬坡率控制提供了有效的策略,可在实践中加以应用。

References

[1]  廖 勇,何金波,姚 骏,等. 基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J]. 中国电机工程学报,2009,29(18):71-77. LIAO Yong, HE Jinbo, YAO Jun, et al . Power smoothing control strategy of direct-driven permanent magnet synchronous generator for wind turbine with pitch angle control and torque dynamic control[J]. Proceedings of the CSEE, 2009, 29(18): 71-77.
[2]  Luo C L, Banakar H, Shen B K, et al. Strategies to smooth wind power fluctuations of wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2007, 22(2): 341-349.
[3]  Senjyu T, Sakamoto R, Urasaki N, et al . Output power leveling of wind turbine generator for all operating regions by pitch angle control[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 467-475.
[4]  严干贵,王 月,李军徽,等. 匹配风电接纳可行域的储能系统控制方法及其经济性评估[J]. 高电压技术,2015,41(7):2148-2155. YAN Gangui, WANG Yue, LI Junhui, et al . Control methods and economic evaluation of energy storage system to match feasible area of wind power[J]. High Voltage Engineering, 2015, 41(7): 2148-2155.
[5]  苗福丰,唐西胜,齐智平. 风储联合调频下的电力系统频率特性分析[J]. 高电压技术,2015,41(7):2209-2216. MIAO Fufeng, TANG Xisheng, QI Zhiping. Analysis of frequency characteristics of power system based on wind farm-energy storage combined frequency regulation[J]. High Voltage Engineering, 2015, 41(7): 2209-2216.
[6]  李 霄,胡长生,刘昌金,等. 基于超级电容储能的风电场功率调节系统建模与控制[J]. 电力系统自动化,2009,33(9):86-90. LI Xiao, HU Changsheng, LIU Changjin, et al . Modeling and controlling of SCES based wind farm power regulation system[J]. Automation of Electric Power Systems, 2009, 33(9): 86-90.
[7]  刘昌金,胡长生,李 霄,等. 基于超导储能系统的风电场功率控制系统设计[J]. 电力系统自动化,2008,32(16):83-88. LIU Changjin, HU Changsheng, LI Xiao, et al . Design of SMES control system for smoothing power fluctuations in wind farms[J]. Automation of Electric Power Systems, 2008, 32(16): 83-88.
[8]  毕大强,葛宝明,王文亮,等. 基于钒电池储能系统的风电场并网功率控制[J]. 电力系统自动化,2010,34(13):72-78. BI Daqiang, GE Baoming, WANG Wenliang, et al . VRB Energy storage system based power control of grid-connected wind farm[J]. Automation of Electric Power Systems, 2010, 34(13): 72-78.
[9]  Li X J, Hui D, Wu L, et al . Control strategy battery state of charge for wind/battery hybrid power system[C]∥2010 Proceedings of IEEE International Symposium on Industrial Electronics. Bari, Italy: IEEE, 2010: 2723-2726.
[10]  张 野,郭 力,贾宏杰,等. 基于电池荷电状态和可变滤波时间常数的储能控制方法[J]. 电力系统自动化,2012,36(6):34-38. ZHANG Ye, GUO Li, JIA Hongjie, et al . An energy storage control method based on state of charge and variable filter time constant[J]. Automation of Electric Power Systems, 2012, 36(6): 34-38.
[11]  任永峰,胡宏彬,薛 宇,等. 全钒液流电池-超级电容混合储能平抑直驱式风电功率波动研究[J]. 高电压技术,2015,41(7):2127-2134. REN Yongfeng, HU Hongbin, XUE Yu, et al . Vanadium redox battery-super capacitor hybrid energy storage system for smooth direct-drive wind turbine power fluctuation[J]. High Voltage Engineering, 2015, 41(7): 2127-2134.
[12]  崔明建,孙元章,柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化,2014,38(12):6-11. CUI Mingjian, SUN Yuanzhang, KE Deping. Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 38(12): 6-11.
[13]  戚永志,刘玉田. 风电高风险爬坡有限度控制[J]. 中国电机工程学报,2013,33(13):69-75. QI Yongzhi, LIU Yutian. Finite control of high risk wind power ramping[J]. Proceedings of the CSEE,2013,33(13): 69-75.
[14]  Senjyu T, Sakamoto R, Urasaki N, et al . Output power leveling of wind turbine generator for all operating regions by pitch angle control[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 467-475.
[15]  Kasem A H, El-Saadany E F, El-Tamaly H H, et al . Power ramp rate control and flicker mitigation for directly grid connected wind turbines[J]. IET Renewable Power Generation, 2010, 4(3): 261-271.
[16]  夏 雪,戚永志,刘玉田. 风机爬坡功率的有限度控制策略[J]. 电力系统自动化,2014,38(20):26-32. XIA Xue, QI Yongzhi, LIU Yutian. Finite control strategy for wind turbine ramping power[J]. Automation of Electric Power Systems, 2014, 38(20): 26-32.
[17]  王 颖,张凯锋,付嘉渝,等. 抑制风电爬坡率的风储联合优化控制方法[J]. 电力系统自动化,2013,37(13):17-23. WANG Ying, ZHANG Kaifeng, FU Jiayu, et al . Optimization control method of wind/storage system for suppressing wind power ramp[J]. Automation of Electric Power Systems, 2013, 37(13): 17-23.
[18]  Rasmussen C E, Williams C K I. Gaussian processes for machine learning[M]. Massachusetts, USA: the MIT Press, 2006: 7-31.
[19]  吕金虎,陆军安,陈士华. 混沌时间序列分析及应用[M]. 武汉:武汉大学出版社,2002:57-80. LÜ Jinhu, LU Jun’an, CHEN Shihua. Chaotic time series analysis and application[M]. Wuhan, China:Wuhan University Press, 2002: 57-80.
[20]  梁 亮,李建林,惠 东. 大型风电场用储能装置容量的优化配置[J]. 高电压技术,2011,37(4):930-936. LIANG Liang, LI Jianlin, HUI Dong. Optimization configuration for capacity of energy storage system in large scale wind farm[J]. High Voltage Engineering, 2011, 37(4): 930-936.
[21]  韩杏宁,陈 雁,文劲宇. 风电场储能装置的鲁棒优化配置[J]. 高电压技术,2015,41(7):2217-2224. HAN Xingning, CHEN Yan, WEN Jinyu. Robust allocation of energy storage system for multiple wind farms[J]. High Voltage Engineering, 2015, 41(7): 2217-2224.
[22]  孙 斌,姚海涛,刘 婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报,2012,32(29):104-110. SUN Bin, YAO Haitao, LIU Ting. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-110.
[23]  杨晓晶. 基于EMD和高斯过程回归组合模型的短期电力负荷预测方法研究[D]. 昆明:昆明理工大学,2010:24-49. YANG Xiaojing. Research on combination model for short-term load forecasting based on EMD and GP regression theory [D]. Kunming, China: Kunming University of Science and Technology, 2010: 24-49.
[24]  李 军,张友鹏. 基于高斯过程的混沌时间序列单步与多步预测[J]. 物理学报,2011,60(7):143-152. LI Jun, ZHANG Youpeng. Single-step and multiple-step prediction of chaotic time series using Gaussian process model[J]. Acta Physica Sinica, 2011, 60(7): 143-152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133