全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于先导传播模型的高速铁路接触网引雷特性

DOI: 10.13336/j.1003-6520.hve.2015.09.027, PP. 3021-3028

Keywords: 高速铁路,接触网,先导传播模型,引雷范围,雷电流,高架桥

Full-Text   Cite this paper   Add to My Lib

Abstract:

高速铁路高架结构使得接触网对地高度增加,更易遭受雷击,针对高速铁路的特殊性进行引雷特性研究十分必要。通过建立高速铁路接触网的先导通道传播模型,计算了直击雷和感应雷的引雷范围,研究了雷电流幅值和高架桥高度对引雷范围的影响;并分析了雷电流幅值和高架桥高度对直击雷分布概率的影响。结果表明高架桥高度为10m时,当雷电流幅值从4kA到200kA变化时,直击雷引雷范围从48.46m变化到202.96m,而只有当雷电流达到73.93kA时,才会出现感应雷并且引雷范围随之增大;雷电流幅值一定时,随着高架桥高度从0增加到18m时,直击雷引雷范围线性增加,出现有效感应雷的临界电流值增大,引雷范围减小。所以在平地上或高架桥高度较小时不能忽略感应雷的存在。

References

[1]  吴广宁,李天鸷,曹晓斌,等. 铁路贯通地线雷击瞬态土壤散流及电位分布的计算[J]. 高电压技术,2013,39(4):951-956. WU Guangning, LI Tianzhi, CAO Xiaobin, et al. Calculation of transient leakage current and potential distribution in soil around railway connecting ground wire under lightning[J]. High Voltage Engineering, 2013, 39(4): 951-956.
[2]  曹晓斌,胡劲松,吴广宁,等. 均匀土壤中矩形接地网的优化方法[J]. 高电压技术,2012,38(10):2721-2727. CAO Xiaobin, HU Jinsong, WU Guangning, et al. Optimization method to rectangular ground grid in uniform soil[J]. High Voltage Engineering, 2012, 38(10): 2721-2727.
[3]  骆 琳,王德学,郝明全,等. “7.23”甬温线特别重大铁路交通事故调查报告[R]. 北京:国务院“7.23”甬温线特别重大铁路交通事故调查组,2011. LUO Lin, WANG Dexue, HAO Mingquan, et al. 7.23 Yong-Wen line particularly major railway accident investigation report[R]. Beijing, China: 7.23 Yong-Wen Line Particularly Major Railway Accident Investigation Team of the State Council, 2011.
[4]  吴广宁. 高电压技术[M]. 北京:机械出版社,2007:180. WU Guangning. High voltage engineering[M]. Beijing, China: China Machine Press, 2007: 180.
[5]  Eriksson A J. The incidence of lightning strikes to power line[J]. IEEE Transactions on Power Delivery, 1987, 2(3): 871-886.
[6]  Armstrong H R, Whitehead E R. Field and analytical studies of transmission line shielding[J]. IEEE Transactions on Power Apparatus and Systems, 1968, 87(1): 270-281.
[7]  王晓彤,施 围,刘文泉. 改进电气几何模型计算输电线路绕击率[J]. 高电压技术,1998,24(1):85-87. WANG Xiaotong, SHI Wei, LIU Wenquan. Calculation of shielding failure on transmission line by improved EGM[J]. High Voltage Engineering, 1998, 24(1): 85-87.
[8]  边 凯,陈维江,王立天,等. 高速铁路牵引供电接触网雷电防护[J]. 中国电机工程学报,2013,33(10):191-199. BIAN Kai, CHEN Weijiang, WANG Litian, et al. Lightning protection of traction power supply catenary of high-speed railway[J]. Proceedings of the CSEE, 2013, 33(10): 191-199.
[9]  邵 立,王国梁,白裔峰. 高速铁路接触网防雷措施及建议[J]. 铁道工程学报,2012(10):80-83. SHAO Li, WANG Guoliang, BAI Yifeng. Measures for lightning protection for OCS of high-speed railway and proposals[J]. Journal of Railway Engineering Society, 2012(10): 80-83.
[10]  曹晓斌,熊万亮,吴广宁,等. 接触网引雷范围划分及跳闸率的计算方法[J]. 高电压技术,2013,39(6):1515-1521. CAO Xiaobin, XIONG Wanliang, WU Guangning, et al. Lightning scope division and lightning trip-out rate calculation method for overhead catenary system[J]. High Voltage Engineering, 2013, 39(6): 1515-1521.
[11]  周利军,高 峰,李瑞芳,等. 高速铁路牵引供电系统雷电防护体系[J]. 高电压技术,2013,39(2):399-406. ZHOU Lijun, GAO Feng, LI Ruifang, et al. Lightning protection system of traction power supply system for high-speed railway[J]. High Voltage Engineering, 2013, 39(2): 399-406.
[12]  Dellera L, Garbagnati E. Lightning strokes simulation by means of the leader progression model, part I: description of the model and evaluation of exposure of free-standing structures[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2009-2017.
[13]  Rizk F A M. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1983-1997.
[14]  Dellera L, Garbagnati E. Lightning stroke simulation by means of the leader progression model. II. exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2023-2029.
[15]  刘 刚,席 禹,唐 军,等. 高压架空输电线路引雷对附近10 kV架空配电线路雷击跳闸特性的影响[J]. 高电压技术,2014,40(3):690-697. LIU Gang, XI Yu, TANG Jun, et al. Influence of triggered lightning of high voltage overhead transmission lines on 10 kV overhead distribution line’s lightning trip characteristics[J]. High Voltage Engineering, 2014, 40(3): 690-697.
[16]  贺恒鑫. 计及工作电压的直流输电线路雷电绕击特性计算模型研究[D]. 武汉:华中科技大学,2007:37-38. HE Hengxin. Study on the lightning shielding performance calculation model for the HVDC transmission lines considering the operation voltage[D]. Wuhan, China: Huazhong University of Science and Technology, 2007: 37-38.
[17]  Alexandrov G N, Ivanov V L, Kizevetter V E. Electric strength of external high voltage insulation[M]. Leningrad, the Soviet Union: Energija, 1969: 1889-1965.
[18]  吕鑫昌. 雷击上行先导起始机制与建模方法研究[D]. 济南:山东大学,2012:50-51. LÜ Xinchang. Research on the inception mechanism and modeling method of lightning upward leader[D]. Jinan, China: Shandong University, 2012: 50-51.
[19]  魏本刚,傅正财,袁海燕,等. 改进先导传播模型法500 kV架空线路雷电绕击分析[J]. 中国电机工程学报,2008,28(25):25-29. WEI Bengang, FU Zhengcai, YUAN Haiyan, et al. Analysis of lightning shielding failure for 500 kV overhead transmission lines based on improved leader progression model[J]. Proceedings of the CSEE, 2008, 28(25): 25-29.
[20]  Lavionof B. Probability calculation of shielding failure under lightning strike[J]. Elektrichestvo, 1981(5): 19-23.
[21]  Carrara G, Thione L. Switching surge strength of large air gaps: aphysical approach[J]. IEEE Transactions on Power Apparatus and Systems, 1976, 95(2): 512-524.
[22]  Rudolf H G. Lightning protection[M]. London, England: Edward Arnold, 1973: 26-27.
[23]  He J L, Tu Y P, Zeng R, et al . Numeral analysis model for shielding failure of transmission line under lightning stroke[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 815-822.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133