全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子源内电子回旋共振等离子体诊断与分析

DOI: 10.13336/j.1003-6520.hve.2015.09.018, PP. 2950-2957

Keywords: 电推进,电子回旋共振,离子源,磁场,等离子体诊断,离子数密度,电子数密度,电子温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

电子回旋共振离子推力器(ECRIT)离子源的内部磁场会干扰离子源内等离子体诊断,选择合理的诊断方法需要分析离子源特性,了解磁场对诊断结果的影响。为此,采用朗缪尔(Langmuir)探针诊断了离子源的等离子体信息,根据朗缪尔探针理论得到电子温度、电子数密度、离子数密度,根据Druyvesteyn方法得到电子温度、电子数密度。结合实验现象,对比了不同方法所得诊断参数差异,分析了诊断结果的准确性。诊断结果表明诊断位置到轴线的径向距离>;10mm后,离子数密度由3.0×;1017m-3增至1.8×;1018m-3,符合离子源的放电原理和实际的放电形貌;不同处理方法所得电子温度、电子数密度接近,电子温度诊断值范围是4~20eV,电子数密度诊断值范围是(2.0~9.0)×;1016m-3。离子数密度诊断结果较电子数密度诊断结果准确;电子温度较低时,使用积分得到的电子温度更准确;平行于探针的磁场会显著降低诊断得到的电子数密度,探针收集面垂直于磁场可减弱磁场干扰。

References

[1]  Normile D, Hayabusa S. Heads home with possible payload[J]. Science, 2010, 328(4): 565-565.
[2]  Kuninaka H, Nishiyama K, Funaki I, et al . Assessment of plasma interactions and flight status of the Hayabusa asteroid explorer propellant by microwave discharge ion engines[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 2125-2132.
[3]  Kuninaka H, Molina-Morales P. Spacecraft charging due to lack of neutralization on ion thrusters[J]. Acta Astronautica, 2004, 55(1): 27-38.
[4]  Kuninaka F H, Toki K. Plasma characterization of a 10-cm diameter microwave discharge ion thruster[J]. Journal of Propulsion and Power, 2004, 20(4): 718-727.
[5]  陈茂林,夏广庆,杨正岩,等. 离子推力器三栅极系统的3维PIC仿真[J]. 高电压技术,2014,40(10):3012-3017. CHEN Maolin, XIA Guangqing, YANG Zhengyan, et al . Three-dimensional PIC simulation of three-grid ion thruster optics system[J]. High Voltage Engineering, 2014, 40(10): 3012-3017.
[6]  陈茂林. 电推力器羽流特性的理论分析与实验研究[D]. 西安:西北工业大学,2009:45-50. CHEN Maolin. Theoretical analysis and experimental study on the plume characteristic of electric thrusters[D]. Xi’an, China: Northwestern Polytechnical University, 2009: 45-50.
[7]  孙安邦. 离子推力器中等离子体流动规律研究[D]. 西安:西北工业大学,2010:11-12. SUN Anbang. Research on the plasma flow law of ion thruster[D]. Xi’an, China: Northwestern Polytechnical University, 2010: 11-12.
[8]  王秉哲,刘 振,黄逸凡,等. 低气压大体积等离子体发生及其电参数特性研究[J]. 高电压技术,2014,40(7):2150-2155. WANG Bingzhe, LIU Zhen, HUANG Yifan, et al . Generation of large-volume plasma under low air-pressure and study of its electrical characteristics[J]. High Voltage Engineering, 2014, 40(7): 2150-2155.
[9]  段 萍,覃海娟,周新维,等. 离子速度对霍尔推力器壁面鞘层特性的影响[J]. 高电压技术,2014,40(1):160-165. DUAN Ping, QIN Haijuan, ZHOU Xinwei, et al . Effect of ion velocity on the characteristics of wall sheath in Hall thruster[J]. High Voltage Engineering, 2014, 40(1): 160-165.
[10]  张 尊,汤海滨. 氙气离子推力器束流等离子体特征参数的Langmuir单探针诊断[J]. 高电压技术,2013,39(7):1602-1608. ZHANG Zun, TANG Haibin. Single Langmuir probe diagnostics for characteristic parameters of the beam plasma in Xe ion thruster[J]. High Voltage Engineering, 2014, 40(7): 2119-2124.
[11]  操慧珺,楚豫川,曹 勇,等. 离子推进器中离子束中和及推进过程的全粒子数值模拟[J]. 高电压技术,2014,40(7):2119-2124. CAO Huijun, CHU Yuchuan, CAO Yong, et al . Full particle numerical simulations of ion beam neutralization and propagation process for ion thruster[J]. High Voltage Engineering, 2014, 40(7): 2119-2124.
[12]  梁 雪,杨 涓,王云民. 电子回旋共振中和器静磁场及微波电磁场的数值计算[J]. 推进技术,2014,35(2):276-281. LIANG Xue, YANG Juan, WANG Yunmin. Numerical computation of static magnetic and microwave electromagnetic fields in electron cyclotron resonance neutralizer[J]. Journal of Propulsion Technology, 2014, 35(2): 276-281.
[13]  杨 涓,王 阳,孟志强,等. 电子回旋共振离子推力器放电室等离子体静电探针诊断[J]. 机械科学与技术,2013,32(2):203-208. YANG Juan, WANG Yang, MENG Zhiqiang, et al . Electronstatic probe diagnosis on the plasma in the discharge chamber of an electron resonance ion thruster[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(2): 203-208.
[14]  孟志强,杨 涓,许映乔,等. 电子回旋共振离子推力器放电室低信号调试[J]. 推进技术,2011,32(3):421-424. MENG Zhiqiang, YANG Juan, XU Yingqiao, et al . Regulation experiment on the discharge chamber of electron cyclotron resonance ion thruster[J]. Journal of Propulsion Technology, 2011, 32(3): 421-424.
[15]  郑茂繁,江豪成,顾 佐,等. 20 cm氙离子推力器3 000 h寿命实验[J]. 航天器环境工程,2009,26(4):374-377. ZHENG Maofan, JIANG Haocheng, GU Zuo, et al . 3 000 h life test of 20 cm xenon ion thruster[J]. Spacecraft Environment Engineering, 2009, 26(4): 374-377.
[16]  杨 涓,石 峰,杨铁链,等. 电子回旋共振离子推力器放电室等离子体数值模拟[J]. 物理学报,2010,59(12):8701-8706. YANG Juan, SHI Feng, YANG Tielian, et al . Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster[J]. Acta Physica Sinica, 2010, 59(12): 8701-8706.
[17]  Foster J E. Discharge characterization of 40 cm-microwave ECR ion source and neutralizer[C]//39 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Huntsville, USA: AIAA, 2003: 5012.
[18]  Bertotti B. Theory of an electrostatic probe in a strong magnetic field[J]. The Physics of Fluids, 1961, 4(8): 2991-2996.
[19]  Demidov V I, Ratynskaia S V, Armstrong R J, et al . Probe measurements of electron energy distributions in a strongly magnetized low-pressure helium plasma[J]. Physics of Plasmas, 1998, 6(1): 350-358.
[20]  Chen F F. Langmuir probe analysis for high density plasmas[J]. Physics of Plasmas, 2001, 8(6): 3029-3041.
[21]  Godyak V A, Piejak R B, Alexandrovich B M. Probe diagnostics of non-Maxwellian plasmas[J]. Journal of Applied Physics, 1993, 73(8): 3657-3663.
[22]  迈克尔 A 力伯曼,阿伦 J 里伯格. 等离子体原理与材料处理[M]. 蒲以康,译. 北京:科学出版社,2007:141-143. Michael A Lieberman, Allen J Lichtenberg. Principles of plasma discharges and materials processing[M]. PU Yikang translated. Beijing, China: Science Press, 2007: 141-143.
[23]  Hutchinson I H. Principles of plasma diagnostics[M]. Cambridge, UK: Cambridge University Press, 2005: 55-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133