全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄土丘陵区几种退耕还林地土壤固存碳氮效应

Keywords: 退耕还林,土壤有机碳,土壤全氮,黄土丘陵区

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨了黄土丘陵区退耕10a和30a的柠条、刺槐、油松及侧柏林地0~60cm不同土层有机碳、氮数量和分布的变化特征。结果表明:相比坡耕地,退耕还林10a后,仅侧柏与油松林地各土层有机碳、氮含量和密度显著提升。退耕还林30a与10a相比,各土层有机碳含量增幅表现为侧柏>油松>刺槐>柠条,总体0~60cm土层碳固存速率分别达到1.06、0.71、0.43、0.36mgC·hm-2·a-1;氮固存速率以刺槐最高,达到0.051mgN·hm-2·a-1,其他还林地固存氮速率接近,为0.014~0.026mgN·hm-2·a-1。30a还林有机碳的增加主要来自0~20cm土层,平均贡献达51.9%,而全氮增加除刺槐林地外,主要来自40~60cm土层,平均贡献达42.5%。各还林地C/N仅在0~20cm表层均有显著提高,但有机碳与氮均表现出显著的回归相关性。综上,长期退耕还林地能够固存碳氮,且以侧柏林地提升有机碳库较佳,而刺槐林地提升氮库较好。

References

[1]  杨绒;严德翼;周建斌.黄土区不同类型土壤可溶性有机氮的含量及特性[J].生态学报,2007(4)
[2]  Jug A;Makeschin F;Rehfuess K E,Short-rotation plantations of balsam poplars,aspen and willows on former arable land in the Federal Republic of Germany(Ⅲ):Soil ecological effects,Forest Ecological Manage,1999.
[3]  Lal R,Forest soils and carbon sequestration,Forest Ecology and Management,2005(1-3).
[4]  Post W M;Kwon K C,Soil carbon sequestration and land use change:Processes and potential,Global Change Biology,2000(3).
[5]  Luo, Y ;Su, B ;Currie, WS ;Dukes, JS ;Finzi, A ;Hartwig, U ;Hungate, B ;McMurtrie, RE ;Oren, R ;Parton, WJ,Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide,BioScience?,2004, 54(8).
[6]  胡会峰;刘国华.森林管理在全球CO2减排中的作用[J].应用生态学报,2006(4)
[7]  冯瑞芳;杨万勤;张健.人工林经营与全球变化减缓[J].生态学报,2006(11)
[8]  Vesterdal L;Ritter E;Gundersen P,Change in soil organic carbon following afforestation of former arable land,Forest Ecology and Management,2002(1-2).
[9]  任书杰;曹明奎;陶波.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展,2006(4)
[10]  张景群;苏印泉;徐喜明.黄土高原人工刺槐林土壤有机碳动态监测研究[J].西北林学院学报,2009(5)
[11]  孙文义;郭胜利.天然次生林与人工林对黄土丘陵沟壑区深层土壤有机碳氮的影响[J].生态学报,2010(10)
[12]  Eswaran H;Berg Evan den;Reich P,Organic carbon in soils of the world,Soil Science Society of America Journal,1993(1).
[13]  Johnson P N;Mistsra S K;Etvin R T,A qualitative choice analysis of factors influencing post-CRP land use decisions,Journal of Agriculture and Applied Economics,1997(1).
[14]  Ohrui K;MitchellM J;Bischoff J M Effect of landscape position on N mineralization and nitrification in a forested watershed in the Dirondack Mountains of New York [J] 1999(4)
[15]  Mann L K,Change in soil carbon storage after cultivation,Soil Science,1986.
[16]  Jobbagy E G;Jackson R B,The vertical distribution of soil organic carbon and it\'s relation to climate and vegetation,Ecological Applications,2002(2).
[17]  姜娜;邵明安.黄土高原小流域不同坡地利用方式的水土流失特征[J].农业工程学报,2011(6)doi:10.3969/j.issn.1002-6819.2011.06.007
[18]  曲卫东;陈云明;王琳琳.黄土丘陵区柠条人工林土壤有机碳动态及其影响因子[J].中国水土保持科学,2011(4)
[19]  郭胜利;马玉红;车升国.黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响[J].林业科学,2009(10)
[20]  吴志祥;谢贵水;陶忠良.海南儋州不同林龄橡胶林土壤碳和全氮特征[J].生态环境学报,2009(4)
[21]  Jerry M M;Sarah B;Jennifer J,Soil warming,carbon-nitrogen interactions,and forest carbon budgets,Proceedings of the National Academy of Sciences(USA),2011(23).
[22]  洪瑜;方晰;田大伦.湘中丘陵区不同土地利用方式土壤碳氮含量的特征[J].中南林学院学报,2006(6)
[23]  杜满义;范少辉;漆良华.不同类型毛竹林土壤碳、氮特征及其耦合关系[J].水土保持学报,2010(4)
[24]  鲍士旦,土壤农化分析,北京:中国农业出版社,2007.
[25]  李紫燕;李世清;李生秀.黄土高原典型土壤有机氮矿化过程[J].生态学报,2008(10)
[26]  李裕元;邵明安;郑纪勇.黄土高原北部草地的恢复与重建对土壤有机碳的影响[J].生态学报,2007(6)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133