全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of Cryopreserved Osteogenic Matrix Cell Sheets for Bone Reconstruction

DOI: 10.4236/scd.2016.61002, PP. 13-23

Keywords: Bone Marrow Stromal Cell, Cryopreservation, Cell Sheet, Injectable Bone, Bone Reconstruction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Skeletal diseases, such as nonunion and osteonecrosis, are now treatable with tissue engineering techniques. Single cell sheets called osteogenic matrix cell sheets (OMCSs) grown from cultured bone marrow-derived mesenchymal stem cells show high osteogenic potential; however, long preparation times currently limit their clinical application. Here, we report a cryopreservation OMCS transplantation method that shortens OMCS preparation time. Cryopreserved rat OMCSs were prepared using slow- and rapid-freezing methods, thawed, and subsequently injected scaffold-free into subcutaneous sites. Rapid- and slow-frozen OMCSs were also transplanted directly to the femur bone at sites of injury. Slow-freezing resulted in higher cell viability than rapid freezing, yet all two cryopreservation methods yielded OMCSs that survived and formed bone tissue. In the rapid- and slow-freezing groups, cortical gaps were repaired and bone continuity was observed within 6 weeks of OMCS transplantation. Moreover, while no significant difference was found in osteocalcin expression between the three experimental groups, the biomechanical strength of femurs treated with slow-frozen OMCSs was significantly greater than those of non-transplant at 6 weeks post-injury. Collectively, these data suggest that slow-frozen OMCSs have superior osteogenic potential and are better suited to produce a mineralized matrix and repair sites of bone injury.

References

[1]  Hernigou, P. and Beaujean, F. (2002) Treatment of Osteonecrosis with Autologous Bone Marrow Grafting. Clinical Orthopaedics and Related Research, 405, 14-23.
http://dx.doi.org/10.1097/00003086-200212000-00003
[2]  Morishita, T., Honoki, K., Ohgushi, H., Kotobuki, N., Matsushima, A. and Takakura, Y.(2006) Tissue Engineering Approach to the Treatment of Bone Tumors: Three Cases of Cultured Bone Grafts Derived from Patients’ Mesenchymal Stem Cells. Artificial Organs, 30, 115-118.
http://dx.doi.org/10.1111/j.1525-1594.2006.00190.x
[3]  Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S.M., Mukhachev, V., Lavroukov, A., Kon, E. and Marcacci, M. (2001) Repair of Large Bone Defects with the Use of Autologous Bone Marrow Stromal Cells. New England Journal of Medicine, 344, 385-386.
http://dx.doi.org/10.1056/NEJM200102013440516
[4]  Oryan, A., Alidadi, S., Moshiri, A. and Maffulli, N. (2014) Bone Regenerative Medicine: Classic Options, Novel Strategies, and Future Directions. Journal of Orthopaedic Surgery and Research, 9, 18.
http://dx.doi.org/10.1186/1749-799X-9-18
[5]  Yamato, M. and Okano, T. (2004) Cell Sheet Engineering. Materials Today, 7, 42-47.
http://dx.doi.org/10.1016/S1369-7021(04)00234-2
[6]  Elloumi-Hannachi, I., Yamato, M. and Okano, T. (2010) Cell Sheet Engineering: A Unique Nanotechnology for Scaffold-Free Tissue Reconstruction with Clinical Applications in Regenerative Medicine. Journal of Internal Medicine, 267, 54-70.
http://dx.doi.org/10.1111/j.1365-2796.2009.02185.x
[7]  Yamato, M., Utsumi, M., Kushida, A., Konno, C., Kikuchi, A. and Okano, T. (2001) Thermo-Responsive Culture Dishes Allow the Intact Harvest of Multilayered Keratinocyte Sheets without Dispase by Reducing Temperature. Tissue Engineering, 7, 473-480.
http://dx.doi.org/10.1089/10763270152436517
[8]  Shimizu, T., Sekine, H., Isoi, Y., Yamato, M., Kikuchi, A. and Okano, T. (2006) Long-Term Survival and Growth of Pulsatile Myocardial Tissue Grafts Engineered By the Layering of Cardiomyocyte Sheets. Tissue Engineering, 12, 499-507.
http://dx.doi.org/10.1089/ten.2006.12.499
[9]  Shimizu, T., Yamato, M., Kikuchi, A. and Okano, T. (2001) Two-Dimensional Manipulation of Cardiac Myocyte Sheets Utilizing Temperature-Responsive Culture Dishes Augments the Pulsatile Amplitude. Tissue Engineering, 7, 141-151.
http://dx.doi.org/10.1089/107632701300062732
[10]  Akizuki, T., Oda, S., Komaki, M., Tsuchioka, H., Kawakatsu, N., Kikuchi, A., Yamato, M., Okano, T. and Ishikawa, I. (2005) Application of Periodontal Ligament Cell Sheet for Periodontal Regeneration: A Pilot Study in Beagle Dogs. Journal of Periodontal Research, 40, 245-251.
http://dx.doi.org/10.1111/j.1600-0765.2005.00799.x
[11]  Nishida, K. (2003) Tissue Engineering of the Cornea. Cornea, 22, S28-S34.
http://dx.doi.org/10.1097/00003226-200310001-00005
[12]  Shiroyanagi, Y., Yamato, M., Yamazaki, Y., Toma, H. and Okano, T. (2004) Urothelium Regeneration Using Viable Cultured Urothelial Cell Sheets Grafted on Demucosalized Gastric Flaps. British Journal of Urology International, 93, 1069-1075.
http://dx.doi.org/10.1111/j.1464-410X.2004.04783.x
[13]  Ohki, T., Yamato, M., Murakami, D., Takagi, R., Yang, J., Namiki, H., Okano, T. and Takasaki, K. (2006) Treatment of Oesophageal Ulcerations Using Endoscopic Translation of Tissue-Engineered Autologous Oral Mucosal Epithelial Cell Sheets in a Canine Model. Gut, 55, 1704-1710.
http://dx.doi.org/10.1136/gut.2005.088518
[14]  Akahane, M., Shigematsu, H., Tadokoro, M., Ueha, T., Matsumoto, T., Tohma, Y., Kido, A., Imamura, T. and Tanaka, Y. (2010) Scaffold-Free Cell Sheet Injection Results in Bone Formation. Journal of Tissue Engineering and Regenerative Medicine, 4, 404-411.
http://dx.doi.org/10.1002/term.259
[15]  Nakamura, A., Akahane, M., Shigematsu, H., Tadokoro, M., Morita, Y., Ohgushi, H., Dohi, Y., Imamura, T. and Tanaka, Y. (2010) Cell Sheet Transplantation of Cultured Mesenchymal Stem Cells Enhances Bone Formation in a Rat Nonunion Model. Bone, 46, 418-424.
http://dx.doi.org/10.1016/j.bone.2009.08.048
[16]  Akahane, M., Ueha, T., Shimizu, T., Shigematsu, H., Kido, A., Omokawa, S., Kawate, K., Imamura, T. and Tanaka, Y. (2010) Cell Sheet Injection as a Technique of Osteogenic Supply. International Journal of Stem Cells, 3, 138-143.
http://dx.doi.org/10.15283/ijsc.2010.3.2.138
[17]  Inagaki, Y., Uematsu, K., Akahane, M., Morita, Y., Ogawa, M., Ueha, T., Shimizu, T., Kura, T., Kawate, K. and Tanaka, Y. (2013) Osteogenic Matrix Cell Sheet Transplantation Enhances Early Tendon Graft to Bone Tunnel Healing in Rabbits. BioMed Research International, 2013, Article ID: 842192.
http://dx.doi.org/10.1155/2013/842192
[18]  Shimizu, T., Akahane, M., Ueha, T., Kido, A., Omokawa, S., Kobata, Y., Murata, K., Kawate, K. and Tanaka, Y. (2013) Osteogenesis of Cryopreserved Osteogenic Matrix Cell Sheets. Cryobiology, 66, 326-332.
http://dx.doi.org/10.1016/j.cryobiol.2013.03.011
[19]  Kito, K., Kagami, H., Kobayashi, C., Ueda, M. and Terasaki, H. (2005) Effects of Cryopreservation on Histology and Viability of Cultured Corneal Epithelial Cell Sheets in Rabbit. Cornea, 24, 735-741.
http://dx.doi.org/10.1097/01.ico.0000154405.68536.a4
[20]  Shimaoka, H., Dohi, Y., Ohgushi, H., Ikeuchi, M., Okamoto, M., Kudo, A., Kirita, T. and Yonemasu, K. (2004) Recombinant Growth/Differentiation Factor-5 (GDF-5) Stimulates Osteogenic Differentiation of Marrow Mesenchymal Stem Cells in Porous Hydroxyapatite Ceramic. Journal of Biomedical Materials Research A, 68, 168-176.
http://dx.doi.org/10.1002/jbm.a.20059
[21]  Tohma, Y., Ohgushi, H., Morishita, T., Dohi, Y., Tadokoro, M., Tanaka, Y. and Takakura, Y. (2008) Bone Marrow-Derived Mesenchymal Cells Can Rescue Osteogenic Capacity of Devitalized Autologous Bone. Journal of Tissue Engineering and Regenerative Medicine, 2, 61-68.
http://dx.doi.org/10.1002/term.67
[22]  Rubin, C., Bolander, M., Ryaby, J.P. and Hadjiargyrou, M. (2001) The Use of Low-Intensity Ultrasound to Accelerate the Healing of Fractures. Journal of Bone and Joint Surgery, 83, 259-270.
[23]  Heckman, J.D., Ryaby, J.P., McCabe, J., Frey, J.J. and Kilcoyne, R.F. (1994) Acceleration of Tibial Fracture-Healing by Non-Invasive, Low-Intensity Pulsed Ultrasound. Journal of Bone and Joint Surgery, 76, 26-34.
[24]  Assiotis, A., Sachinis, N.P. and Chalidis, B.E. (2012) Pulsed Electromagnetic Fields for the Treatment of Tibial Delayed Unions and Nonunions. A Prospective Clinical Study and Review of the Literature. Journal of Orthopaedic Surgery Research, 7, 24.
http://dx.doi.org/10.1186/1749-799X-7-24
[25]  Robiony, M., Polini, F., Costa, F. and Politi, M. (2002) Osteogenesis Distraction and Platelet-Rich Plasma for Bone Restoration of Severely Atrophic Mandible: Preliminary Results. Journal of Oral and Maxillofacial Surgery, 6, 630-635.
http://dx.doi.org/10.1053/joms.2002.33107
[26]  Kitoh, H., Kitakoji, T., Tsuchiya, H., Mitsuyama, H., Nakamura, H., Katoh, M. and Ishiguro, N. (2004) Transplantation of Marrow-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma During Distraction Osteogenesis—A Preliminary Result of Three Cases. Bone, 35, 892-898.
http://dx.doi.org/10.1016/j.bone.2004.06.013
[27]  Yoshikawa, T., Nakajima, Y., Takakura, Y. and Nonomura, A. (2005) Osteogenesis with Cryopreserved Marrow Mesenchymal Cells. Tissue Engineering, 11, 152-160.
http://dx.doi.org/10.1089/ten.2005.11.152

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133