全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

采用改进多分辨率快速S变换的电能质量扰动识别

DOI: 10.13335/j.1000-3673.pst.2015.05.036, PP. 1412-1418

Keywords: 电能质量,暂态扰动,数学形态学,开运算,S变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

噪声干扰是影响电能质量暂态扰动识别准确率的最重要因素。经过S变换后获得的扰动信号的模时-频矩阵具有灰度图像特点。因此,可通过二维数学形态学方法,滤除噪声干扰,获得更高的识别准确率。首先,针对扰动信号时-频分布特点,设计具有不同时-频分辨率的多分辨率快速S变换方法以降低运算量、提高特征表现能力;之后,在阈值滤波基础上,根据信号时-频分布特点,选择线段型、零角度结构元进行灰度级形态学开运算,进一步滤除高频频域噪声;最后,从原始信号、信号傅里叶谱、多分辨率快速S变换模矩阵中提取5种特征建立决策树分类器,识别含噪声信号与6种复合扰动信号在内的12种电能质量信号。通过仿真对比实验发现,新方法具有更好的抗噪能力,更加适用于低信噪比环境下的电能质量信号识别。

References

[1]  Manish K S,Rajiv K.Classification of power quality events:A review[J].Electrical Power and Energy Systems,2012,43(1):11-19.
[2]  He S,Li K,Zhang M.A real-time power quality disturbances classification using hybrid method based on S-Transform and dynamics[J].IEEE Trans on Instrument and Measurement,2013,62(9):2465-2475.
[3]  陈华丰,张葛祥.基于决策树和支持向量机的电能质量扰动识别[J].电网技术,2013,37(5):1272-1278.Chen Huafeng,Zhang Gexiang.Power quality disturbance identification using decision tree and support vector machine[J].Power System Technology,2013,37(5):1272-1278(in Chinese).
[4]  Granados-Lieberman D,Romero-Troncoso R J,Osornio-Rios R A,et al.Techniques and methodologies for power quality analysis and disturbances classification in power systems:a review[J].IET Generation,Transmission & Distribution,2011,5(4):519-529.
[5]  徐永海,赵燕.基于短时傅里叶变换的电能质量扰动识别与采用奇异值分解的扰动时间定位[J].电网技术,2011,35(8):174-180.Xu Yonghai,Zhao Yan.Identification of power quality disturbance based on Short-Term Fourier Transform and disturbance time orientation by singular value decomposition[J].Power System Technology,2011,35(8):174-180(in Chinese).
[6]  曹健,林涛,徐遐龄,等.一种电能质量扰动监测与识别新方法[J].中国电机工程学报,2011,31(31):125-133.Cao Jian,Lin Tao,Xu Xialing,et al.A new method for measurement and classification of power quality disturbance[J].Proceedings of the CSEE,2011,31(31):125-133(in Chinese).
[7]  黄南天,徐殿国,刘晓胜.基于 S 变换与 SVM 的电能质量复合扰动识别[J].电工技术学报,2011,26(10):23-30.Huang Nantian,Xu Dianguo,Liu Xiaosheng.Identification of power quality complex disturbances based on S-transform and SVM[J].Transaction of China Electrotechnical Society,2011,26(10):23-30(in Chinese).
[8]  徐方维,杨洪耕,叶茂清,等.基于改进 S 变换的电能质量扰动分类[J].中国电机工程学报,2012,32(4):77-84.Xu Fangwei,Yang Honggeng,Ye Maoqing,et al.Classification for power quality short duration disturbances based on generalized S-transform[J].Proceedings of the CSEE,2012,32(4):77-84(in Chinese).
[9]  焦尚彬,黄璜,张青.基于双曲S 变换的电能质量信号降噪新方法[J].电网技术,2011,35(9):105-110.Jiao Shangbin,Huang Huang,Zhang Qing.A new hyperbolic S-transform based denoising method of power quality signals[J].Power System Technology,2011,35(9):105-110(in Chinese).
[10]  张志禹,满蔚仕,郗垒,等.快速S 变换在电能质量分析中的应用[J].电网技术,2013,37(5):1285-1290.Zhang Zhiyu,Man Weishi,Xi Lei,et al.Application of fast S-Transform in power quality analysis[J].Power System Technology,2013,37(5):1285-1290(in Chinese).
[11]  王曦,毕贵红,祖哲.基于递归特性分析和BP 神经网络的电能质量扰动识别与定位[J].电网技术,2012,36(8):215-221.Wang Xi,Bi Guihong,Zu Zhe.Based on recursive feature analysis and BP neural network analyze identification and location of power quality disturbances[J].Power System Technology,2012,36(8):215-221(in Chinese).
[12]  姚建刚,郭知非,陈锦攀.基于小波和BP神经网络的电能扰动分类新方法[J].电网技术,2012,36(5):139-144.Yao Jiangang,Guo Zhifei,Chen Jinpan.A new approach to recognize power quality disturbances based on wavelet transform and BP Neural Network[J].Power System Technology,2012,36(5):139-144(in Chinese).
[13]  Dash P K,Padhee A M,Panigrahi T K.A hybrid time-frequency approach based fuzzy logic system for power island detection in grid connected distributed generation[J].International Journal of Electrical Power & Energy Systems,2012(42):453-464.
[14]  Shukla S,Mishra S,Singh B.Power quality event classification under noisy conditions using EMD-Based de-noising techniques[J].IEEE Transactions on Industrial Informatics,2014,5(10):1044-1054.
[15]  张巧革,刘志刚,朱玲,等.基于多标签Rank-WSVM的复合电能质量扰动分类[J].中国电机工程学报,2013,33(28):114-120.Zhang Qiaoge,Liu Zhigang,Zhu Ling,et al.Recognition of multiple power quality disturbances using multi-label wavelet support vector machine[J].Proceedings of the CSEE,2013,33(28):114-120(in Chinese).
[16]  张杨,刘志刚.一种基于时频域多特征量的电能质量混合扰动分类新方法[J].中国电机工程学报,2012,32(34):83-90.Zhang Yang,Liu Zhigang.A new method for power quality mixed disturbance classification based on time-frequency domain multiple features[J].Proceedings of the CSEE,2012,32(34):83-90(in Chinese).
[17]  Samantaray S R.Decision tree-initialised fuzzy rule-based approach for power quality events classification[J].IET Generation,Transmission & Distribution,2010,4(4):538-551.
[18]  Rodríguez A,Aguado J A,Martín F,et al.Rule-based classification of power quality disturbances using S-transform[J].Electric Power Systems Research,2012,86(1):113-121.
[19]  Biswal M,Dash P K.Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier[J].Digital Signal Processing,2013,23(4):1071-1083.
[20]  尹立敏,张东建,陶玉忠.基于数学形态学的电晕日盲紫外图象处理方法研究[J].东北电力大学学报,2013,33(1/2):148-151.Yi Limin,Zhang Dongjian,Tao Yuzhong.A ultraviolet image processing method of corona solar blind based on mathematical morphology[J].Journal of Northeast Dianli University,2013,33(1/2):148-151(in Chinese).
[21]  Hooshmand R,Enshaee A.Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm[J].Electric Power Systems Research,2010,80(12):1552-1561.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133