全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

基于启发式最小二乘支持向量机的中长期电力负荷预测

, PP. 195-199

Keywords: 负荷预测,支持向量机,核偏最小二乘回归,启发式算子,单位国内生产总值电耗

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对中长期负荷预测,提出了基于年负荷总量、年负荷增长量、年负荷增长率、年负荷增长加速率、年国内生产总值等5个指标的启发式最小二乘支持向量机中长期负荷预测模型。首先,通过核函数将低维输入变量空间映射到高维特征空间,建立核偏最小二乘回归模型,拟合出单位国内生产总值电耗;然后以单位国内生产总值电耗为启发式算子,在历史负荷数据的基础上合理假设待预测年的负荷总量,利用启发式算子反推出该负荷值对应的年国内生产总值,形成支持向量机扩展训练样本,将支持向量机外推预测转化为内插求值。最后,用训练好的支持向量机求出预测结果。实际算例的结果表明,所提出的方法预测精度较高,具有较强的可行性和实用性。

References

[1]  牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998:5-30.
[2]  张伏生,刘芳,赵文彬,等.灰色Verhulst 模型在中长期负荷预测中的应用[J].电网技术,2003,27(5):37-39.
[3]  Zhang Fusheng,Liu Fang,Zhao Wenbin,et al.Application of grey verhulst model in middle and long term load forecasting[J].Power System Technology,2003,27(5):37-39(in Chinese).
[4]  周德强.改进的灰色Verhulst模型在中长期负荷预测中的应用[J].电网技术,2009,33 (18) :124-127.
[5]  Zhou Deqiang.Application of improved gray verhulst model in middle and long term load forecasting[J].Power System Technology,2009,33(18):124-127(in Chinese).
[6]  伍力,吴捷,叶军.负荷中长期预测中一种改进的模糊聚类算法[J].电网技术,2000,24(1):36-38.
[7]  Wu Li,Wu Jie,Ye Jun.An improving fuzzy clustering algorithm in long-term load forecasting[J].Power System Technology,2000,24(1):36-38(in Chinese).
[8]  孙广强,姚建刚,谢宇翔,等.基于新鲜度函数和预测有效度的模糊自适应变权重中长期电力负荷组合预测[J].电网技术,2009,33(9):103-107.
[9]  Sun Guangqiang,Yao Jiangang,Xie Yuxiang,et al.Combination forecast of medium-and long-term load using fuzzy adaptive variable weight based on fresh degree function and forecasting availability[J].Power System Technology,2009,33(9):103-107(in Chinese).
[10]  罗治强,张焰,朱杰.粗集理论在电力系统负荷预测中的应用[J].电网技术,2004,28(3):29-32.
[11]  Luo Zhiqiang,Zhang Yan,Zhu Jie.Application of rough set theory in electric power load forecast[J].Power System Technology,2004,28(3):29-32(in Chinese).
[12]  Parkd C.Electric load forecasting using an artificial neural network[J].IEEE Transactions on Power Systems,1991,6(2):442 -449.
[13]  李春祥,牛东晓,孟丽敏.基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型[J].电网技术,2009,33(2):99-104.
[14]  Li Chunxiang,Niu Dongxiao,Meng Limin.A comprehensive model for long-and medium-term load forecasting based on analytic hierarchy process and radial basis function neural network[J].Power System Technology,2009,33(2):99-104(in Chinese).
[15]  赵登福,王蒙,张讲社,等.基于支撑向量机方法的短期负荷预测[J].中国电机工程学报,2002,22(4):26-30.
[16]  Zhao Dengfu,Wang Meng,Zhang Jiangshe,et al.A support vector machine approach for short term load forecasting[J].Proceedings of the CSEE,2002,22(4):26-30(in Chinese).
[17]  赵登福,庞文晨,张讲社,等.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):8-13.
[18]  Zhao Dengfu,Pang Wenchen,Zhang Jiangshe,et al.Based on Bayesian theory and online learning SVM for short term load forecasting[J].Proceedings of the CSEE,2005,25(13):8-13(in Chinese).
[19]  刘耀年,庞松岭,李鉴.基于粗糙集理论和最小二乘支持向量机的中长期负荷预测[J].中国电力,2007,40(10):42-44.
[20]  肖先勇,葛嘉,何德胜.基于支持向量机的中长期电力负荷组合预测[J].电力系统及其自动化学报,2008,20(1):84-88.
[21]  Xiao Xianyong,Ge Jia,He Desheng.Combination method of mid-long term load forecasting based on support vector machine[J].Proceedings of the CSU-EPSA,2008,20(1):84-88(in Chinese).
[22]  张雪君,陈刚,周杰,等.基于粒子群优化鲁棒支持向量回归机的中长期负荷预测[J].电力系统保护与控制,2009,37(21):77-81.
[23]  Zhang Xuejun,Chen Gang,Zhou Jie,et al.Medium and long-term load forecast based on PSO-RSVR[J].Power System Protection and Control,2009,37(21):77-81(in Chinese).
[24]  Rosipal R J.Trejo L.Kernel partial least squares regression in repro- ducing kernel Hilbert space[J].Journal of Machine Learning Research,2001,2(6):97-123.
[25]  Chen Shuai,Zhu Jianning,Pan Jun,et al.Parameters optimi zation of LS-SVM and its application[J].Journal of East China University of Science and Technology:Natural Science Edition,2008,34(2):278-282(in Chinese).
[26]  毛李帆,江岳春,姚建刚,等.采用正交信号修正法与偏最小二乘回归的中长期负荷预测[J].中国电机工程学报,2009,29(16):82-88.
[27]  Mao Lifan,Jiang Yuechun,Yao Jiangang,et al.Medium and long term load forecasting based on orthogonal signal correction and partial least-squares regression[J].Proceedings of the CSEE,2009, 29(16):82-88(in Chinese).
[28]  上海统计局.2006上海统计年鉴[M].北京:中国统计出版社,2006:10-85.
[29]  Liu Yaonian,Pang Songling,Li Jian.Medium and long-term load forecasting based on rough sets and least square support vector machines[J].Electric Power,2007,40(10):42-44 (in Chinese).
[30]  毛李帆,姚建刚,金永顺,等.中长期负荷预测的异常数据辨识与缺失数据处理[J].电网技术,2010,34(7):148-153.
[31]  Mao Lifan,Yao Jiangang,Jin Yongshun,et al.Abnormal data identification and missing data filling in medium-and long-term load forecasting[J].Power System Technology,2010,34(7):148-153(in Chinese).
[32]  牛东晓,吕海涛,张云云.贝叶斯框架下最小二乘支持向量机的中长期电力负荷组合预测[J].华北电力大学学报,2008,35(6):62-66.
[33]  Niu Dongxiao,Lü Haitao,Zhang Yunyun.Combination method of mid-long term load forecasting based on support vector machine within the Bayesian evidence framework[J].Journal of North China Electric Power University,2008,35(6):62-66 (in Chinese).
[34]  姚林,阳建宏,何飞,等.基于核偏最小二乘的锌层重量预测模型基于核偏最小二乘的锌层重量预测模型[J].控制工程,2008,15(2):154-157.
[35]  Yao Lin,Yang Jianhong,He Fei,et al.Forecasting model for zinc coating weights based on kernel partial least squares [J].Control Engineering of China,2008,15(2):154-157(in Chinese).
[36]  陈帅,朱建宁,潘俊,等.最小二乘支持向量机的参数优化及其应用[J].华东理工大学学报:自然科学版,2008, 34(2):278-282.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133