全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2009 

基于最小二乘支持向量机的风速预测模型

, PP. 144-147

Keywords: 风速预测,最小二乘支持向量机(LS-SVM),风电场,支持向量机(SVM),神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

风速具有较大的随机性,预测的准确度不高。针对这种现象,基于最小二乘支持向量机(leastsquaressupportvectormachine,LS-SVM)理论,结合某风电场实测风速数据,建立了最小二乘支持向量机风速预测模型。对该风电场的风速进行了提前1h的预测,其预测的平均绝对百分比误差仅为8.55%,预测效果比较理想。同时将文中的风速预测模型与神经网络理论、支持向量机(supportvectormachine,SVM)理论建立的风速预测模型进行了比较。仿真结果表明,文中所提模型在预测精度和运算速度上皆优于其他模型。

References

[1]  王德意,杨卓,杨国清.基于负荷混沌特性和最小二乘支持向量机的短期负荷预测[J].电网技术,2008,32(7):66-70. Wang Deyi,Yang Zhuo,Yang Guoqing.Short-term load forecasting based on chaotic characteristic of loads and least squares support vector machines[J].Power System Technology,2008,32(7):66-70(in Chinese).
[2]  肖智,陈婷婷.基于支持向量机的外贸出口预测[J].科技管理研究,2006,7(4):231-232. Xiao Zhi,Chen Tingting.Foreign trade export predict based on support vector machine[J].Science and Technology Management Research,2006,7(4):231-232(in Chinese).
[3]  Cadenas E,Rivera W.Wind speed forecasting in the south coast of Oaxaca,Mexico[J].Renewable Energy,2007,32(12):2116-2128.
[4]  Abdel-Aal R E,Elhadidy M A,Shaahid S M.Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks[J].Renewable Energy,2009,34(7):1686-1699.
[5]  Salcedo-Sanz S,Perez-Bellido A M,Ortiz-Garcia E G,et al.Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction[J].Renewable Energy,2009,34(6):1451-1457.
[6]  Sfetsos A.A novel approach for the forecasting of mean hourly wind speed time series[J].Renewable Energy,2002,27(2):163-174.
[7]  Monfared M,Rastegar H,Kojabadi H M.A new strategy for wind speed forecasting using artificial intelligent methods[J].Renewable Energy,2009,34(3):845-848.
[8]  蔡凯,谭伦农,李春林,等.时间序列与神经网络法相结合的短期风速预测[J].电网技术,2008,32(8):82-85. Cai Kai,Tan Lunnong,Li Chunlin,et al.Short-term wind speed forecasting combing time series and neural network method[J].Power System Technology,2008,32(8):82-85(in Chinese).
[9]  Kariniotakis G,Stavrakakis G,Nogaret E.Wind power forecasting using advanced neural network models[J].IEEE Trans on Energy Conversion,1996,11(4):762-767.
[10]  Landber L.Short-term prediction of local wind conditions[J].Journal of Wind Engineering and Industrial Aerodynamics,2001,22(89):235-245.
[11]  张昊,吴捷,郁滨.电力负荷的模糊预测方法[J].电力系统自动化,1997,21(12):11-14. Zhang Hao,Wu Jie,Yu Bin.Electric load forecasting using fuzzy method[J].Automation of Electric Power Systems,1997,21(12):11-14(in Chinese).
[12]  Lessmann S,Vob S.A reference model for customer-centric data mining with support vector machines[J].European Journal of Operational Research,2009,199(2):520-530.
[13]  张林,刘先珊,阴和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(19):38-41. Zhang Lin,Liu Xianshan,Yin Hejun.Application of support vector machine based on time sequence in power system load forecasting [J].Power System Technology,2004,28(19):38-41(in Chinese).
[14]  牛东晓,刘达,邢棉,等.基于自组织映射支持向量机的日前电价预测[J].电网技术,2007,31(18):15-21. Niu Dongxiao,Liu Da,Xing Mian,et al,Day-ahead electricity price forecasting using support vector machines based on self-organizing map[J].Power System Technology,2007,31(18):15-21(in Chinese).
[15]  杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-63. Yang Yanxi,Liu Ding.Short-term load forecasting based on wavelet transform and least square support vector machines[J].Power System Technology,2005,29(13):60-63(in Chinese).
[16]  耿艳,韩学山,韩力.基于最小二乘支持向量机的短期负荷预测[J].电网技术,2008,32(18):72-75. Geng Yan,Han Xueshan,Han Li.Short-term load forecasting based on least squares support vector machine[J].Power System Technology,2008,32(18):72-75(in Chinese).
[17]  张永明,齐维贵,王军栋.基于支持向量机的时间序列交叉负荷预测方法[J].电网技术,2007,31(S2):208-209. Zhang Yongming,Qi Weigui,Wang Jundong.Time series crossover load forecasting approach based on support vector machines[J].Power System Technology,2007,31(S2):208-209(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133