全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2009 

改进的灰色Verhulst模型在中长期负荷预测中的应用

, PP. 124-127

Keywords: 中长期负荷预测,灰色Verhulst模型,最小二乘支持向量机算法,等维新息技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对中长期电力负荷预测“小样本”、“贫信息”、“不确定”、“非线性”等特点,提出了基于最小二乘支持向量机算法与等维新息技术的改进灰色Verhulst模型,并将该模型用于具有“S型”增长或处于饱和增长状态的中长期电力负荷预测。根据原始数据建立了灰色Verhulst模型,利用LS-SVM算法对模型中的参数进行了估计,基于等维新息递补预测法对负荷数据进行了预测。实例计算结果表明,基于该模型得到的预测结果相对误差在3%以内,与传统预测模型相比,采用文中的模型可获得更高的预测精度。

References

[1]  王成山,杨军,张崇见.灰色系统理论在城市年用电量预测中的应用:不同预测方法的分析比较[J].电网技术,1999,23(2):15-18. Wang Chengshan,Yang Jun,Zhang Chongjian.Application of grey system theory in city electricity demand forecasting[J].Power System Technology,1999,23(2):15-18(in Chinese).
[2]  张伏生,刘芳,赵文彬,等.灰色Verhulst模型在中长期负荷预测中的应用[J].电网技术,2003,27(5):37-40. Zhang Fusheng,Liu Fang,Zhao Wenbin,et al.Application of grey Verhulst model in middle and long term load forecasting [J].Power System Technology,2003,27(5):37-40(in Chinese).
[3]  邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1990:33-58.
[4]  Vapnik V N.The nature of statistical learning theory [M].Heidellberg:Springer Verlag,1995:91-97.
[5]  Suykens J A K,Vandewalle J.Least squares support vector machine classfiers[J].Neural Processing Letters,1999(9):293-300.
[6]  拜存有,冯旭,张升堂,等.灰色等维新息模型在灌溉用水量预测中的应用研究[J].西北农林科技大学学报:自然科学版,2004,32(9):115-118. Bai Cunyou,Feng Xu,Zhang Shengtang,et al.The application research on the grey equal-dimension and new-information in the prediction of irrigation water consumption [J].Journal of Northwest A&F University:Natural Science Edition,2004,32(9):115-118(in Chinese).
[7]  张大海,汪世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,2002,22(8):140-142. Zhang Dahai,Wang Shifang,Shi Kaiquan.Theoretical defect of grey prediction formula and its improvement[J].Systems Engineering-Theory & Practice,2002,22(8):140-142(in Chinese).
[8]  俞明生,冯桂宏,杨祥.组合优化灰色模型在中长期电力负荷预测中的应用[J].沈阳工业大学学报,2007,29(2):450-453. Yu Mingsheng,Feng Guihong,Yang Xiang.Application of combined optimum grey model to mid and long term load forecasting [J].Journal of Shenyang University of Technology,2007,29(2):450-453(in Chinese).
[9]  徐军华,刘天琪.基于小波分解和人工神经网络的短期负荷预测[J].电网技术,2004,28(8):30-33. Xu Junhua,Liu Tianqi.An approach to short-term load forecasting based on wavelet transform and artifical neural network[J].Power System Technology,2004,28(8):30-33(in Chinese).
[10]  李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59. Li Yuancheng,Fang Tingjian,Yu Erkeng.Study of support vector machines for short-term load forecasting[J].Proceedings of the CSEE,2003,23(6):55-59(in Chinese).
[11]  吴景龙,杨淑霞,刘承水.基于遗传算法优化参数的支持向量机短期负荷预测方法[J].中南大学学报:自然科学版,2009,40(1):180-184. Wu Jinglong,Yang Shuxia,Liu Chengshui.Parameter selection for support vector machines based on genetic algorithms to short-term power load forecasting[J].Journal of Central South University:Science and Technology,2009,40(1):180-184(in Chinese).
[12]  杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64. Yang Yanxi,Liu Ding.Short-term load forecasting based on wavelet transform and least squre support vector machines[J].Power System Technology,2005,29(13):60-64(in Chinese).
[13]  马文晓,白晓民,沐连顺.基于人工神经网络和模糊推理的短期负荷预测方法[J].电网技术,2003,27(5):29-32. Ma Wenxiao,Bai Xiaomin,Mu Lianshun.Short-term load forecasting using artifical neural network and fuzzy inference [J].Power System Technology,2003,27(5):29-32(in Chinese).
[14]  高强,王胜辉,徐建源.基于人工神经网络的中期电力负荷预测[J].沈阳工业大学学报,2004,26(1):41-43. Gao Qiang,Wang Shenghui,Xu Jianyuan.Study of mid-term electric load forecasting based on ANN[J].Journal of Shenyang University of Technology,2004,26(1):41-43(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133