全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2011 

基于决策融合的直驱风力发电机组轴承故障诊断

, PP. 36-41

Keywords: 多源特征,决策融合,直驱风力发电机组,调心滚子轴承,故障实验,特征提取,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于振动信号时域、频域和包络谱等多源特征,采用决策融合方法构建了直驱风力发电机组轴承故障诊断模型。对直驱风力发电机组主轴轴承经常发生的外圈故障、内圈故障、滚动体故障以及正常运行4种状态进行了实验研究。选取具有较高故障区分度,适合风电机组轴承故障诊断的特征参数。以风电机组振动信号的时域特征、频域特征和包络谱频域特征为诊断样本,使用灰色关联分析方法对机组轴承故障进行初步诊断,然后用证据融合理论对不同证据进行决策信息融合,从而获得最终诊断结果。实验结果表明,该方法能较好地识别风力发电机组轴承故障。

References

[1]  Amirat Y,Benbouzid M,Al-Ahmar E,et al.A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J].Renewable and Sustainable Energy Reviews,2009,13(9):2629-2636.
[2]  Hameed Z,Hong Y,Cho Y,et al.Condition monitoring and fault detection of wind turbines and related algorithms:a review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
[3]  李强,袁越,李振杰,等.考虑峰谷电价的风电-抽水蓄能联合系统能量转化效益研究[J].电网技术,2009,33(6):13-18.
[4]  Li Qiang,Yuan Yue,Li Zhenjie,et al.Research on energy shifting benefits of hybrid wind power and pumped hydro storage system considering peak-valley electricity price[J].Power System Technology,2009,33(6):13-18(in Chinese).
[5]  杨勇,阮毅,任志斌,等.直驱式风力发电系统中的并网逆变器[J].电网技术,2009,33(17):157-161.
[6]  Yang Yong,Ruan Yi,Ren Zhibin,et al.Grid-connected inverter in direct-drive wind power generation system[J].Power System Technology,2009,33(17):157-161(in Chinese).
[7]  安学利,蒋东翔.风力发电机组运行状态的混沌特性识别及其趋势预测[J].电力自动化设备,2010,30(3):15-19.
[8]  An Xueli,Jiang Dongxiang.Chaotic characteristics identification and trend prediction of running state for wind turbine[J].Electric Power Automation Equipment,2010,30(3):15-19(in Chinese).
[9]  苏勋文,米增强,王毅.风电场常用等值方法的适用性及其改进研究[J].电网技术,2010,34(6):175-180.
[10]  Su Xunwen,Mi Zengqiang,Wang Yi.Applicability and improvement of common-used equivalent methods for wind farms[J].Power System Technology,2010,34(6):175-180(in Chinese).
[11]  张宁,周天睿,段长刚,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.
[12]  Zhang Ning,Zhou Tianrui,Duan Changgang,et al.Impact of large-scale wind farm connecting with power grid on peak load regulation demand[J].Power System Technology,2010,34(1):152-158(in Chinese).
[13]  迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81.
[14]  Chi Yongning,Liu Yanhua,Wang Weisheng,et al.Study on impact of wind power integration on power system[J].Power System Technology,2007,31(3):77-81(in Chinese).
[15]  孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007,31(20):55-62.
[16]  Sun Yuanzhang,Wu Jun,Li Guojie.Influence research of wind power generation on power systems[J].Power System Technology,2007,31(20):55-62(in Chinese).
[17]  孙永全,郭建英,陈洪科,等.兆瓦级直驱风力发电机组可靠性增长预测[J].中国电机工程学报,2010,30(18):67-71.
[18]  Sun Yongquan,Guo Jianying,Chen Hongke,et al.MW level direct-driven wind turbine reliability growth prediction [J].Proceedings of the CSEE,2010,30(18):67-71(in Chinese).
[19]  赵明浩.风力机故障特征分析与实验研究[D].北京:清华大学,2010.
[20]  贺建军,赵蕊.基于信息融合技术的大型水轮发电机故障诊断[J].中南大学学报:自然科学版,2007,38(2):333-338.
[21]  He Jianjun,Zhao Rui.Hydroelectric generating sets fault diagnosis based on information fusion technology[J].Journal of Central South University of Technology:Science and Technology,2007,38(2):333-338(in Chinese).
[22]  安学利,周建中,刘力,等.基于熵权理论和信息融合技术的水电机组振动故障诊断[J].电力系统自动化,2008,32(20):78-82.
[23]  An Xueli,Zhou Jianzhong,Liu Li,et al.Vibration fault diagnosis for hydraulic generator units based on entropy weight theory and information fusion technology[J].Automation of Electric Power Systems,2008,32(20):78-82(in Chinese).
[24]  邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1986:103-104.
[25]  雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117.
[26]  Lei Yaguo,He Zhengjia,Zi Yanyang.Fault diagnosis based on novel hybrid intelligent model[J].Chinese Journal of Mechanical Engineering, 2008,44(7):112-117(in Chinese).
[27]  Xu Z,Xuan J,Shi T,et al.A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique[J].Expert Systems with Applications,2009(36):11801-11807.
[28]  Lei Y,He Z,Zi Y,et al.New clustering algorithm-based fault diagnosis using compensation distance evaluation technique [J].Mechanical Systems and Signal Processing,2008(22):419-435.
[29]  Sreejith B,Verma A,Srividya A.Fault diagnosis of rolling element bearing using time-domain features and neural networks[C]//2008 IEEE Region 10 Colloquium and the Third ICIIS.Kharagpur,India:IEEE,2008:1-8.
[30]  安学利,赵明浩,蒋东翔,等.基于支持向量机和多源信息的直驱风力发电机组故障诊断[J].电网技术,2011,35(4):117-123.
[31]  An Xueli,Zhao Minghao,Jiang Dongxiang,et al.Direct-drive wind turbine fault diagnosis based on support vector machine and multi-source information[J].Power System Technology,2011,35(4):117-123(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133