全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种考虑空间增长潜力的城市扩张灰度CA模型与应用

DOI: 10.3724/SP.J.1047.2014.00727, PP. 727-734

Keywords: 粒子群,城市规划,主体功能区划,元胞自动机

Full-Text   Cite this paper   Add to My Lib

Abstract:

元胞自动机(CellularAutomata,CA)是进行城市空间演变模拟的重要建模工具。经典城市扩张CA模拟规则提取,主要利用一段历史变化样本对城市化(1值)和未城市化(0值)进行双向拟合,存在0值过度拟合现象,即历史观测不变化的元胞样本并不代表其没有转变的潜在可能性。为此,本文将城市空间增长潜力引入CA模型,重新构建CA规则学习样本和参数拟合目标,并利用粒子群优化算法进行参数挖掘,弥补传统CA规则提取的局限性。研究以广州市为案例区,基于主体功能区规划思想构建空间开发潜力,对改进的城市扩张CA模拟模型进行实例应用。结果表明,本文改进的CA模型不论在整体格局还是细节呈现上,均比传统CA模型表现出更高的可信度,模型整体评估精度高于70%,结果可为中长期城市规划提供更好的参考。

References

[1]  龙瀛,毛其智,沈振江,等.综合约束CA城市模型:规划控制约束及城市增长模拟[J].城市规划学刊,2008,6:83-91.
[2]  Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic Geography, 1970,16:141-154.
[3]  White R, Engelen G. Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns[J]. Environ plan A, 1993, 25:1175-1199.
[4]  Batty M, Xie Y C, Sun Z L. Modeling urban dynamics through GIS-based cellular automata [J]. Computers, Environmental and Urban Systems, 1999, 23:205-233.
[5]  Clark K C, Gaydos L J. Loose-coupling a cellular automata model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore [J]. Geographical Information Science, 1998,12(7):699-714.
[6]  Yang Q S, Li X, Shi X. Cellular automata for simulating land use changes based on support vector machines[J]. Computers & Geosciences, 2008, 34:592-602.
[7]  He C Y, Okada N, Zhang Q, et al. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata [J]. Landscape and Urban Planning, 2008, 86:79-91.
[8]  Santé I, García A M, Miranda D, et al. Cellular automata models for the simulation of real-world urban processes: A review and analysis [J]. Landscape and Urban Planning, 2010, 96:108-122.
[9]  Wu F, Webster C J. Simulation of land development through the integration of cellular automata and multi criteria evaluation[J]. Environ Plan B, 1998, 5:103-126.
[10]  Wu F. Calibration of stochastic cellular automata the application to rural-urban land conversions [J]. International Journal of Geographical Information Science, 2002,16(8):795-818.
[11]  Li X, Yeh A G. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta[J]. International Journal of Remote Sensing, 1998,19(8):1501-1518.
[12]  Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002,16(4):323-343.
[13]  Ambrosio D D, Spataro W, Iovine G. Parallel genetic algorithms for optimizing cellular automata models of natural complex phenomena: An application to debris flows[J]. Computer Simulation of natural phenomena for Hazard Assessment, 2006, 32(7):861-875.
[14]  Li X, Lin J Y, Chen Y M, et al. Calibrating cellular automata based on landscape metrics by using genetic algorithms[J]. International Journal of Geographical Information Science, 2013, 27(3):594-613.
[15]  Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Piscataway NJ, 1995.
[16]  杜国民,陈晓翔,黎夏.基于微粒群优化算法的空间优化决策[J].地理学报,2006,61(12):1290-1298.
[17]  冯永久,童小华,Liu Yan,等.城市形态演化的粒子群智能随机元胞模型与应用[J].地球信息科学学报,2010,12(1):1-9.
[18]  龚建周,刘彦随,张灵.广州市土地利用结构优化配置及其潜力[J].地理学报,2010,65(11):1391-1400.
[19]  樊杰.我国主体功能区划的科学基础[J].地理学报,2007,62(4):339-350.
[20]  Fan J, Tao A, Ren Q. On the historical background, scientific intentions, goal orientation, and policy framework of major function-oriented zone planning in China[J]. Journal of Resources and Ecology, 2010,1(4):289-299.
[21]  冯永久,刘艳,韩震.不同样本方案下遗传元胞自动机的土地利用模拟及景观评价[J].应用生态学报,2011,22(4):957-963.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133