全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

助力型下肢外骨骼机器人现状及展望

, PP. 92-99

Full-Text   Cite this paper   Add to My Lib

Abstract:

助力型下肢外骨骼机器人是模仿人体下肢运动、增强穿戴者运动能力的智能机器人装置,可以在灾难现场救援、野外施工及军事用途等车辆无法通行的环境中发挥作用。通过分析国内外下肢助力型外骨骼机器人的研究现状,指出目前国内研究仍处于理论分析和实验室测试阶段。提出了助力型下肢外骨骼机器人研究的关键技术,并对助力型外骨骼机器人的发展趋势进行了展望。

References

[1]  Lenzi T, Vitiello N, Rossi S M M D, et al. Measuring human-robot interaction on wearable robots: A distributed approach[J]. Mechatronics, 2011, 21(6): 1123-1131.
[2]  Kong K, Bae J, Tomizuka M. Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications[J]. Mecha- tronics, IEEE/ASME Transactions on, 2009, 14(1): 105-118.
[3]  Tonietti G, Schiavi R, Bicchi A. Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction[C]//Robotics and Au- tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 526-531.
[4]  Cestari M, Sanz-Merodio D, Arevalo J C, et al. Ares, a variable stiffness actuator with embedded force sensor for the atlas exoskeleton[J]. Industrial Ro- bot: An International Journal, 2014, 41(6): 518-526.
[5]  Beyl P, Van Damme M, Van Ham R, et al. Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exo- skeletons[J]. Mechatronics, IEEE/ASME Transactions on, 2014, 19(3): 1046-1056.
[6]  Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[C]//Proceedings of the 17th IFAC World Congress. COEX, South Korea: International Federation of Automatic Control, 2008: 10823-10825.
[7]  Radford N A, Strawser P, Hambuchen K, et al. Valkyrie: Nasa's first bipedal humanoid robot[J]. Journal of Field Robotics, 2015, 32(3): 397-419.
[8]  Logan D G, Pentzer J, Brennan S N, et al. Comparing batteries to generators as power sources for use with mobile robotics[J]. Journal of Power Sources, 2012, 212: 130-138.
[9]  Thangavelautham J, Gallardo D, Strawser D, et al. Hybrid fuel cells power for long duration robot missions in field environments [C]//14th International Conference on Climbing and Walking Robots. Paris, France: World Scientific Publishing, 2011.
[10]  Raade J W, Kazerooni H. Analysis and design of a novel hydraulic power source for mobile robots[J]. Automation Science and Engineering, IEEE Trans- actions on, 2005, 2(3): 226-232.
[11]  Kumar N, Hofacker M, Barth E. Design and control of a free-liquid-piston engine compressor for compact robot power[J]. Vanderbilt Undergraduate Re- search Journal, 2013, 9(2013).
[12]  Aguirre-Ollinger G, Colgate J E, Peshkin M, et al. Active-impedance control of a lower-limb assistive exoskeleton[C] //Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. IEEE, 2007: 188-195.
[13]  Lee H, Lee B, Kim W, et al. Human-robot cooperative control based on phri (physical human-robot interaction) of exoskeleton robot for a human upper extremity[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 985-992.
[14]  Bartenbach V, Wyss D, Seuret D, et al. A lower limb exoskeleton research platform to investigate human-robot interaction[C]//Rehabilitation Robotics (ICORR), 2015 IEEE International Conference on. IEEE, 2015: 600-605.
[15]  Wang M, Wu X, Liu D, et al. A human motion prediction algorithm for non-binding lower extremity exoskeleton[C]//Information and Automation, 2015 IEEE International Conference on. IEEE, 2015: 369-374.
[16]  Zoss A B, Kazerooni H, Chu A. Biomechanical design of the berkeley lower extremity exoskeleton (bleex)[J]. Mechatronics, IEEE/ASME Transactions on, 2006, 11(2): 128-138.
[17]  Chu A, Kazerooni H, Zoss A. On the biomimetic design of the berkeley lower extremity exoskeleton (bleex)[C]//Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 4345-4352.
[18]  Amundson K, Raade J, Harding N, et al. Hybrid hydraulic-electric power unit for field and service robots[C]//Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE, 2005: 3453-3458.
[19]  Amundson K, Raade J, Harding N, et al. Development of hybrid hydraulic-electric power units for field and service robots[J]. Advanced Robotics, 2006, 20(9): 1015-1034.
[20]  Kazerooni H, Racine J-L, Huang L, et al. On the control of the berkeley lower extremity exoskeleton (bleex)[C]//Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 4353-4360.
[21]  Kazerooni H, Steger R, Huang L. Hybrid control of the berkeley lower extremity exoskeleton (bleex)[J]. The International Journal of Robotics Research, 2006, 25(5-6): 561-573.
[22]  Steger R, Kim S H, Kazerooni H. Control scheme and networked control architecture for the berkeley lower extremity exoskeleton (bleex)[C]//Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006: 3469-3476.
[23]  Ghan J, Steger R, Kazerooni H. Control and system identification for the berkeley lower extremity exoskeleton (bleex)[J]. Advanced Robotics, 2006, 20(9): 989-1014.
[24]  Ghan J, Kazerooni H. System identification for the berkeley lower extremity exoskeleton (bleex)[C]//Robotics and Automation, 2006. ICRA 2006. Proceed- ings 2006 IEEE International Conference on. IEEE, 2006: 3477-3484.
[25]  Kazerooni H. Exoskeletons for human power augmentation[C]//Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Confer- ence on. IEEE, 2005: 3459-3464.
[26]  Kim S, Anwar G, Kazerooni H. High-speed communication network for controls with the application on the exoskeleton[C]//American Control Confer- ence, 2004. Proceedings of the 2004. IEEE, 2004: 355-360.
[27]  Zoss A, Kazerooni H. Design of an electrically actuated lower extremity exoskeleton[J]. Advanced Robotics, 2006, 20(9): 967-988.
[28]  Kasaoka K, Sankai Y. Predictive control estimating operator's intention for stepping-up motion by exo-skeleton type power assist system hal[C]//Intelli- gent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on. IEEE, 2001: 1578-1583.
[29]  Lee S, Sankai Y. Power assist control for walking aid with hal-3 based on emg and impedance adjustment around knee joint[C]//Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. IEEE, 2002: 1499-1504.
[30]  Kawamoto H, Kanbe S, Sankai Y. Power assist method for hal-3 estimating operator's intention based on motion information[C]//Robot and Human Inter- active Communication, 2003. Proceedings. ROMAN 2003. The 12th IEEE International Workshop on. IEEE, 2003: 67-72.
[31]  Kawamoto H, Lee S, Kanbe S, et al. Power assist method for hal-3 using emg-based feedback controller[C]//Systems, Man and Cybernetics, 2003. IEEE International Conference on. IEEE, 2003: 1648-1653.
[32]  Hayashi T, Kawamoto H, Sankai Y. Control method of robot suit hal working as operator's muscle using biological and dynamical information[C]//Intelli- gent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on. IEEE, 2005: 3063-3068.
[33]  Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for hal[J]. Advanced Robotics, 2005, 19(7): 717-734.
[34]  Suzuki K, Mito G, Kawamoto H, et al. Intention-based walking support for paraplegia patients with robot suit hal[J]. Advanced Robotics, 2007, 21(12): 1441-1469.
[35]  Tsukahara A, Kawanishi R, Hasegawa Y, et al. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit hal[J]. Ad- vanced robotics, 2010, 24(11): 1615-1638.
[36]  Cao H, Yin Y, Ling Z, et al. Walk-aided system with wearable lower extremity exoskeleton for brain-machine engineering[C]//Advances in Cognitive Neurodynamics ICCN 2007. Springer, 2008: 849-855.
[37]  Cao H, Ling Z, Zhu J, et al. Design frame of a leg exoskeleton for load-carrying augmentation[C]//Robotics and Biomimetics (ROBIO), 2009 IEEE Inter- national Conference on. IEEE, 2009: 426-431.
[38]  曹恒, 贺成坤, 孟宪伟,等. 下肢外骨骼服传感靴的结构优化分析[J]. 工程设计学报, 2010, 17(1): 35-39.
[39]  曹恒, 孟宪伟, 凌正阳, 等. 两足外骨骼机器人足底压力测量系统[J]. 传感技术学报, 2010, 23(3): 326-330.
[40]  方明周, 王瑜, 朱钧, 等. 负重型下肢外骨骼机器人机构研究与仿真[J]. 华东理工大学学报: 自然科学版, 2014, 40(4): 112-115.
[41]  Can-Jun Y, Bin N, Ying C. Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation[C]// Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on. IEEE, 2005: 467-472.
[42]  牛彬. 可穿戴式的下肢步行外骨骼控制机理研究与实现[D]. 杭州: 浙江大学机械工程学系, 2006.
[43]  Zhu Y, Cui J, Zhao J. Biomimetic design and biomechanical simulation of a 15-dof lower extremity exoskeleton[C]//Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on. IEEE, 2013: 1119-1124.
[44]  Zhu Y, Yang J, Jin H, et al. Design and evaluation of a parallel-series elastic actuator for lower limb exoskeletons[C]//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 1335-1340.
[45]  Zhu Y, Zhang G, Zhang C, et al. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton[J]. Bio-Medical Materials and Engi- neering, 2015, 26(Suppl 1): 729-738.
[46]  Guo Q, Zhang X, Jiang D, et al. Hydraulic pressure control system simulation and performance test of lower extremity exoskeleton[M]//Social Robotics. Springer Berlin Heidelberg, 2012: 612-620.
[47]  Guo Q, Jiang D. Method for Walking Gait Identification in a Lower Extremity Exoskeleton based on C4. 5 Decision Tree Algorithm[J]. Int J Adv Robot Syst, 2015, 12: 30.
[48]  Huang R, Cheng H, Zheng H, et al. Study on master-slave control strategy of lower extremity exoskeleton robot[C]//Intelligent Control and Automation (WCICA), 2014 11th World Congress on. IEEE, 2014: 985-991.
[49]  Duong M K, Cheng H, Tran H T, et al. Minimizing Human-Exoskeleton Interaction Force Using Compensation for Dynamic Uncertainty Error with Adap- tive RBF Network[J]. Journal of Intelligent & Robotic Systems, 2015: 1-21.
[50]  贾山, 路新亮, 韩亚丽, 等. 在摆动相中用于下肢外骨骼跟踪人体踝关节轨迹的方法[J]. 东南大学学报: 自然科学版, 2014, 44(1): 87-92.
[51]  Gu G M, Lee D, Kim J. Development of a low cost force sensor for wearable robotic systems[C]//Robotics and Biomimetics (ROBIO), 2011 IEEE Interna- tional Conference on. IEEE, 2011: 1450-1455.
[52]  Yu H, Wang D H, Yang C J, et al. A walking monitoring shoe system for simultaneous plantar-force measurement and gait-phase detection[C]//Ad- vanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on. IEEE, 2010: 207-212.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133