全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

四足机器人发展现状与展望

, PP. 59-63

Full-Text   Cite this paper   Add to My Lib

Abstract:

自然界中有许多地形无法使用传统轮式或履带式车辆到达,而哺乳动物却能够在这些地形行走自如,这充分展示出四足移动方式的优势。在动物的启发下,科研人员对四足机器人进行了深入研究,并取得了丰硕成果。本文综述国内外四足机器人的发展现状,归纳了四足机器人领域涉及的关键技术,展望了其发展趋势。

References

[1]  Raibert M H. Legged robots that balance[M]. Massachusetts: MIT press, 1986.
[2]  Raibert M H. Trotting, pacing and bounding by a quadruped robot[J]. Journal of biomechanics, 1990, 23(Suppl 1): 79-98.
[3]  Semini C. HyQ: Design and development of a hydraulically actuated quadruped robot[D]. Genoa, Italy: University of Genoa, 2010.
[4]  Semini C, Barasuol V, Boaventura T, et al. Towards versatile legged robots through active impedance control[J]. The International Journal of Robotics Re-search, 2015. doi:10.1177/0278364915578839.
[5]  Barasuol V, Buchli J, Semini C, et al. A reactive controller framework for quadrupedal locomotion on challenging terrain[C]//Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013: 2554-2561.
[6]  Seok S, Wang A, Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah Robot[J]. IEEE/ASME Transactions on Mechatronics, 2014, 20(3): 1117-1129.
[7]  Wooden D, Malchano M, Blankespoor K, et al. Autonomous navigation for BigDog[C]//Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010: 4736-4741.
[8]  汪劲松, 易昕. QW—1 型全方位四足步行机器人的设计及实验研究[J]. 机械工程学报, 1991, 27(5): 69-74.
[9]  马培荪, 马烈. 全方位四足步行机器人JTUWM—II 转弯步态控制的研究[J]. 上海交通大学学报, 1995, 29(5): 87-92.
[10]  Rong X, Li Y, Meng J, et al. Design for Several Hydraulic Parameters of a Quadruped Robot[J]. Appl. Math, 2014, 8(5): 2465-2470.
[11]  Cai R B, Chen Y Z, Hou W Q, et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Joumal of Advanced Robotioc System, 2013, 10(148).
[12]  Li M, Jiang Z, Wang P, et al. Control of a quadruped robot with bionic springy legs in trotting gait[J]. Journal of Bionic Engineering, 2014, 11(2): 188-198.
[13]  Gao J Y, Duan X G, Huang Q, et al. The research of hydraulic quadruped bionic robot design[C]//Complex Medical Engineering (CME), 2013 ICME Interna-tional Conference on. IEEE, 2013: 620-625.
[14]  Hu N, Li S, Huang D, et al. Crawling Gait Planning for a Quadruped Robot with High Payload Walking on Irregular Terrain[C]//Proceedings of the 19th IFAC World Congress, 2014 . IFAC, 2014: 2153-2158.
[15]  McGhee R B, Frank A A. On the stability properties of quadruped creeping gaits[J]. Mathematical Biosciences, 1968, 3: 331-351.
[16]  Messuri D, Klein C. Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion[J]. Robotics and Automation, IEEE Journal of, 1985, 1(3): 132-141.
[17]  Hirose S, Tsukagoshi H, Yoneda K. Normalized energy stability margin and its contour of walking vehicles on rough terrain[C]//Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. IEEE, 2001: 181-186.
[18]  Nagy P V. An investigation of walker/terrain interaction[D]. Pittsburgh, USA: Carnegie Mellon University, 1992.
[19]  Pack D J, Kang H S. An omnidirectional gait control using a graph search method for a quadruped walking robot[C]//Robotics and Automation, 1995. Proceed-ings., 1995 IEEE International Conference on. IEEE, 1995: 988-993.
[20]  Kalakrishnan M, Buchli J, Pastor P, et al. Fast, robust quadruped locomotion over challenging terrain[C]//Robotics and Automation (ICRA), 2010 IEEE Inter-national Conference on. IEEE, 2010: 2665-2670.
[21]  Yazdani R, Majd V J, Oftadeh R. Dynamically stable trajectory planning for a quadruped robot[C]//Electrical Engineering (ICEE), 2012 20th Iranian Confer-ence on. IEEE, 2012: 608-613.
[22]  Zhang S, Gao J, Duan X, et al. Trot pattern generation for quadruped robot based on the ZMP stability margin[C]//Complex Medical Engineering (CME), 2013 ICME International Conference on. IEEE, 2013.
[23]  Lin B S, Song S M. Dynamic modeling, stability, and energy efficiency of a quadrupedal walking machine[J]. Journal of Robotic Systems, 2001, 18(11): 657-670.
[24]  Won M, Kang T H, Chung W K. Gait planning for quadruped robot based on dynamic stability: landing accordance ratio[J]. Intelligent Service Robotics, 2009, 2(2): 105-112.
[25]  Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review[J]. Neural Networks, 2008, 21(4): 642-653.
[26]  Bajracharya M, Ma J, Malchano M, et al. High fidelity day/night stereo mapping with vegetation and negative obstacle detection for vision-in-the-loop walk-ing[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 3663-3670.
[27]  Ma J, Susca S, Bajracharya M, et al. Robust multi-sensor, day/night 6-DOF pose estimation for a dynamic legged vehicle in GPS-denied environments[C]// Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012: 619-626.
[28]  McGhee R B. Finite state control of quadruped locomotion[J]. Simulation, 1967, 9(3): 135-140.
[29]  Mosher R S. Test and evaluation of a versatile walking truck[C]//Proceedings of Off-Road Mobility Research Symposium. Washington DC, 1968: 359-379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133