Han J W, Kamber M. Data mining: Concepts and techniques[M]. San Francisco, CA: Morgan Kaufmann, 2001: 257-259.
[2]
周水庚, 李丰, 陶宇飞, 等. 面向数据库应用的隐私保护研究综述[J]. 计算机学报, 2009, 32(5): 847-861. Zhou Shuigeng, Li Feng, Tao Yufei, et al. Privacy preservation in database applications: A survey[J]. Chinese Journal of Computers, 2009, 32(5): 847-861.
[3]
Quinlan J R. C4.5: Programs for Machine Learning[M]. San Mateo, CA: Morgan Kaufmann, 1993, 17-69.
[4]
Xiao X, Tao Y. Personalized privacy preservation[C]//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Illinois, Chicago: ACM, 2006: 229-240.
[5]
Sweeney L. K-anonymity: A model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.
[6]
Machanavajjhala A, Kifer D, Gehrke J, et al. L-diversity: Privacy beyond K-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007(1): 3-15.
[7]
Agrawal R, Srikant R. Privacy-preserving data mining[J]. ACM Sigmod Record, 2000, 29(2): 439-450.
[8]
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995, 14(2): 1137-1145.
[9]
周恩策, 刘纯平, 张玲燕, 等. 基于时间窗的自适应核密度估计运动检 测方法[J]. 通信学报, 2011, 3(2): 106-114. Zhou Ence, Liu Chunping, Zhang Lingyan, et al. Foreground object detection based on time information window adaptive kernel density estimation[J]. Journal on Communications, 2011, 3(2): 106-114.
[10]
Yang J, Yu X, Xie Z Q. A novel virtual sample generation method based on Gaussian distribution[J]. Knowledge-Based Systems, 2011, 24 (6): 740-748.
[11]
Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20(8): 273-297.