全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

Parzen窗核密度估计的大规模数据模式分类隐私保护方法

DOI: 10.3981/j.issn.1000-7857.2014.36.017, PP. 104-109

Keywords: Parzen,,核密度估计,数据发布,隐私保护

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对大规模数据集上的模式分类任务,提出基于Parzen窗核密度估计的模式分类隐私保护算法。利用Parzen窗算法对原始大规模训练集服从的概率密度进行估计,根据估计的概率密度函数构造la个替换训练样本,其中l为原始样本的数目,a通过10折交叉验证方式确定。最后发布替换训练样本进行模式分类,以实现原始数据上的隐私保护。在Adult数据集上的仿真实验充分验证了算法的有效性。

References

[1]  Han J W, Kamber M. Data mining: Concepts and techniques[M]. San Francisco, CA: Morgan Kaufmann, 2001: 257-259.
[2]  周水庚, 李丰, 陶宇飞, 等. 面向数据库应用的隐私保护研究综述[J]. 计算机学报, 2009, 32(5): 847-861. Zhou Shuigeng, Li Feng, Tao Yufei, et al. Privacy preservation in database applications: A survey[J]. Chinese Journal of Computers, 2009, 32(5): 847-861.
[3]  Quinlan J R. C4.5: Programs for Machine Learning[M]. San Mateo, CA: Morgan Kaufmann, 1993, 17-69.
[4]  Xiao X, Tao Y. Personalized privacy preservation[C]//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Illinois, Chicago: ACM, 2006: 229-240.
[5]  Sweeney L. K-anonymity: A model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.
[6]  Machanavajjhala A, Kifer D, Gehrke J, et al. L-diversity: Privacy beyond K-anonymity[J]. ACM Transactions on Knowledge Discovery from Data, 2007(1): 3-15.
[7]  Agrawal R, Srikant R. Privacy-preserving data mining[J]. ACM Sigmod Record, 2000, 29(2): 439-450.
[8]  Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995, 14(2): 1137-1145.
[9]  周恩策, 刘纯平, 张玲燕, 等. 基于时间窗的自适应核密度估计运动检 测方法[J]. 通信学报, 2011, 3(2): 106-114. Zhou Ence, Liu Chunping, Zhang Lingyan, et al. Foreground object detection based on time information window adaptive kernel density estimation[J]. Journal on Communications, 2011, 3(2): 106-114.
[10]  Yang J, Yu X, Xie Z Q. A novel virtual sample generation method based on Gaussian distribution[J]. Knowledge-Based Systems, 2011, 24 (6): 740-748.
[11]  Cortes C, Vapnik V. Support vector networks[J]. Machine Learning, 1995, 20(8): 273-297.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133