张钦礼, 陈秋松, 胡威, 等. 充填钻孔寿命SVM优化预测模型研究[J]. 中南大学学报: 自然科学版, 2014, 45(1): 2868-2874. Zhang Qinli, Chen Qiusong, Hu Wei, et al. SVM optimal prediction model of the backfill drill-hole life[J]. Journal of Central South University: Science and Technology Edition, 2013, 44(7): 2868-2874.
[2]
王新民, 古德生, 张钦礼. 深井矿山充填理论与管道输送技术[M]. 长沙: 中南大学出版社, 2010. Wang Xinmin, Gu Desheng, Zhang Qinlin. Theory and technology of deep mine backfilling[M]. Changsha: Central South University Press, 2010.
[3]
李作章, 徐日升. 尾矿库安全技术[M]. 北京: 航空工业出版社, 1996. Li Zuozhang, Xu Risheng. Safety Technical for tailing pond[M]. Beijing: Aviation Industry Press, 1996.
[4]
彭亮茗, 舒杰. 浅析混凝土外加剂使用及其发展[J]. 上海建材, 2010 (1): 7-8. Peng Liangming, Shu Jie. Analysed the using and development of concrete admixture[J]. Shanghai Building Materials, 2010(1): 7-8.
[5]
Wang X M, Zhao B, Zhang Q L. Cemented backfilling technology with unclassified tailings based on vertical sand silo[J]. Journal of Central South University of Technology, 2008, 15(6): 800-807.
[6]
张钦礼, 李谢平, 杨伟, 等. 基于BP网络的某矿山充填料浆配比优化[J]. 中南大学学报: 自然科学版, 2013, 44(7): 2868-2874. Zhang Qinli, Li Xieping, Yang Wei, et al. Optimization of filling slurry ratio in a mine based on back-propagation neural network[J]. Journal of Central South University: Science and Technology Edition, 2013, 44(7): 2868-2874.
[7]
韩斌, 王贤来, 肖卫国, 等. 基于多元非线性回归的井下采场充填体强度预测及评价[J]. 采矿与安全工程学报, 2012, 29(5): 714-718. Han Bin, Wang Xianlai, Xiao Weiguo, et al. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis[J]. Journal of Mining & Safety Engineering, 2012, 29(5): 714-718.
[8]
吴景龙, 杨淑霞, 刘承水. 基于遗传算法优化参数的支持向量机短期负荷预测方法[J]. 中南大学学报: 自然科学版, 2009, 40(1): 180-184. Wu Jinglong, Yang Shuxia, Liu Chengshui. Parameter selection for support vector machines based on genetic algorithms to short- term power load forecasting[J]. Journal of Central South University of Technology: Natural Science Edition, 2009, 40(1): 180-184.
[9]
李伟超, 宋大猛, 陈斌. 基于遗传算法的人工神经网络[J]. 计算机工程与设计, 2006, 27(2): 316-318. Li Weichao, Song Dameng, Cheng Bin. Artificial neural network based on genetic algorithm[J]. Compute Engineering and Design, 2006, 27(2): 316-318.
[10]
Jae H M, Lee Y C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[J]. Expert Systems with Application, 2005, 28: 603-614.
[11]
李蓓智, 李立强, 杨建国, 等. 基于GA-SVM的质量预测系统设计和实现[J]. 计算机工程, 2011, 37(1): 167-169. Li Beizhi, Li Liqiang, Yang Jianguo, et al. Design and implementation of quality prediction system based on GA- SVM[J]. Computer Engineering, 2011, 37(1): 167-169.
[12]
郑春红, 焦李成, 郑贵文. 基于GA的遥感图像目标SVM自动识别[J]. 控制与决策, 2005, 20(11) : 1212-1215. Zheng Chunhong, Jiao Licheng, Zheng Guiwen. Genetic algorithm based SVM for automatic target classification of remote sensing images[J]. Control and Decision, 2005, 20(11): 1212-1215.
[13]
范作鹏, 任少峰, 张忠辉, 等. 高效减水剂对全尾砂充填料性能的影响[J]. 金属矿山, 2014, 455(5): 40-44. Fan Zuopeng, Ren Shaofeng, Zhang Zhonghui, et al. Effects of superplasticizers on properties of whole tailing backfilling materials[J]. Metal Mine, 2014, 455(5): 40-44.
[14]
曾照凯, 张义平, 吴刚. 基于正交优化的胶结充填体强度试验研究[J]. 有色金属, 2011, 62(3): 6-8. Zeng Zhaokai, Zhang Yiping, Wu Gang. Cementing filling body strength test research based on orthogonal optimization[J]. Nonferrous Metal, 2011, 62(3): 6-8.
[15]
魏微, 高谦. 减水剂对全尾砂新型胶凝材料强度的影响[J]. 混凝土, 2013, 5: 80-82. Wei Wei, Gao Qian. Effects of water' reducers on strength of neotype whole-tailings cementing materials[J]. Concrete, 2013, 5: 80-82.