全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

组合材料芯片技术在新材料研发中的应用

DOI: 10.3981/j.issn.1000-7857.2015.10.006, PP. 64-78

Keywords: 组合材料,高通量,材料基因工程,快速材料表征

Full-Text   Cite this paper   Add to My Lib

Abstract:

组合材料芯片是高通量材料实验技术的重要组成部分,可实现在一块较小的基底上,通过精妙设计,以任意元素为基本单元,组合集成多达10~108种不同成分、结构、物相等材料样品库,并利用高通量表征方法快速获得材料的成分、结构、性能等信息,以实验通量的大幅度提高带来研究效率的根本转变,实现材料搜索的"多、快、好、省"。组合材料芯片技术经历了20年的发展与完善,已形成一系列较为成熟的材料制备技术与表征方法。本文列举多年来涉及微电子材料、磁性材料、光电材料、能源材料、介电材料、催化材料、合金材料等15个领域中较为成功的应用案例,以展示组合材料芯片技术在加速新材料发现、材料和器件性能优化、以及基础物理研究中的突出作用及效果。

References

[1]  王海舟, 汪洪, 丁洪, 等. 高通量材料实验与表征[J]. 科技导报, 2015, 33 (10): 31-49. Wang Haizhou, Wang Hong, Ding Hong, et al. High throughput experimentation for materials genome[J]. Science & Technology Review, 2005, 33(10): 31-49.
[2]  Beenakker C W J. Random- matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69(3): 731-808.
[3]  Blatter G, Feigel'man M V, Geshkenbein V B, et al. Vortices in hightemperature superconductors[J]. Reviews of Modern Physics 1994, 66(4): 1125-388.
[4]  Dagotto E. Correlated electrons in high-temperature superconductors[J]. Reviews of Modern Physics, 1994, 66(3): 763-840.
[5]  Damascelli A, Hussain Z, Shen Z X. Angle- resolved photoemission studies of the cuprate superconductors[J]. Reviews of Modern Physics, 2003, 75(2): 473-541.
[6]  LedermanD,VierDC,MendozaD,etal.Detectionofnew superconductors using phase-spread alloy-films[J]. Applied Physics Letters, 1995, 66 (26): 3677-3679.
[7]  Knigge B, Hoffmann A, Lederman D, et al. Search for new superconductors in the Y-Ni-B-C system[J]. Journal of Applied Physics, 1997, 81(5): 2291-2295.
[8]  Pessaud S, Gervais F, Champeaux C, et al. Combinatorial solid state chemistry by multitarget laser ablation: A way for the elaboration of new superconducting cuprates thin films[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1999, 60 (3): 205-211.
[9]  Logvenov G, Sveklo I, Bozovic I. Combinatorial molecular beam epitaxy of La2- xSrxCuO4 +δ [J]. Physica C: Superconductivity and Its Applications, 2007, 460: 416-419.
[10]  Wong-Ng W, Otani M, Levin I, et al. A phase relation study of Ba-YCu- O coated- conductor films using the combinatorial approach[J]. Applied Physics Letters, 2009, 94(17): 171910.
[11]  Saadat M, George A E, Hewitt K C. Densely mapping the phase diagram of cuprate superconductors using a spatial composition spread approach[J]. Physica C: Superconductivity and Its Applications, 2010, 470: S59- S61.
[12]  Clayhold J A, Kerns B M, Schroer M D, et al. Combinatorial measurements of Hall effect and resistivity in oxide films[J]. Review of Scientific Instruments, 2008, 79(3): 033908.
[13]  Hewitt K C, Casey P A, Sanderson R J, et al. High-throughput resistivity apparatus for thin-film combinatorial libraries[J]. Review of Scientific Instruments, 2005, 76(9): 093906.
[14]  Jin S, O'Bryan H M, Tiefel T H, et al. Large magnetoresistance in polycrystalline La-Y-Ca-Mn-O[J]. Applied Physics Letters, 1995, 66 (3): 382.
[15]  Jin S, Tiefel T H, McCormack M, et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J]. Science, 1994, 264(5157): 413-415.
[16]  Xiong G C, Li Q, Ju H L, et al. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3-δ thin films[J]. Applied Physics Letters, 1995, 66(11): 1427.
[17]  Brice?o G, Chang H, Sun X D, et al. A class of cobalt oxide magnetoresistance materials disovered with combinatorial synthesis[J]. Science, 1995, 270: 273-275.
[18]  Bloch I, Dalibard J, Zwerger W. Many-body physics with ultracold gases[J]. Reviews of Modern Physics, 2008, 80(3): 885-964.
[19]  Mitschke U, Bauerle P. The electroluminescence of organic materials[J]. Journal of Materials Chemistry, 2000, 10(7): 1471-1507.
[20]  Trindade T, O'Brien P, Pickett N L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives[J]. Chemistry of Materials, 2001, 13(11): 3843-3858.
[21]  YeS,XiaoF,PanYX, etal.Phosphorsinphosphor-convertedwhitelightemitting diodes: Recent advances in materials, techniques and properties[J]. Materials Science and Engineering: Reports, 2010, 71(1): 1-34.
[22]  Sun X D, Wang K A, Yoo Y, et al. Solution- phase synthesis of luminescent materials libraries[J]. Advanced Materials, 1997, 9(13): 1046-1049.
[23]  Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science, 1998, 279 (5357): 1712-1714.
[24]  Sun X D, Xiang X D. New phosphor (Gd2- xZnx) O3- δ : Eu3 + with high luminescent efficiency and superior chromaticity[J]. Applied Physics Letters, 1998, 72(5): 525-527.
[25]  Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering: Reports, 2004, 44(2/3): 45-89.
[26]  Yavari A R. Materials science: A new order for metallic glasses[J]. Nature, 2006, 439(7075): 405-406.
[27]  Yoo Y K, Ohnishi T, Wang G, et al. Continuous mapping of structureproperty relations in Fe1-xNix metallic alloys fabricated by combinatorial synthesis[J]. Intermetallics, 2001, 9(7): 541-545.
[28]  Zolotukhin I V, Yu E K. Amorphous metallic alloys[J]. Soviet Physics Uspekhi, 1990, 33(9): 720.
[29]  Yoo Y K, Xue Q, Chu Y S, et al. Identification of amorphous phases in the Fe- Ni- Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics, 2006, 14(3): 241-247.
[30]  Xiang X D. High throughput synthesis and screening for functional materials[J]. Applied Surface Science, 2004, 223(1-3): 54-61.
[31]  Gregoire J M, McCluskey P J, Dale D, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scripta Materialia, 2012, 66(3/4): 178-181.
[32]  McCluskey P J, Vlassak J J. Combinatorial nanocalorimetry[J]. Journal of Materials Research, 2011, 25(11): 2086-2100.
[33]  Lai S. Current status of the phase change memory and its future[C]//49th IEEE International Electron Device Meeting. Washington DC, USA: Technical Digest, 2003: 1011-1014.
[34]  Wong H S P. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12): 2201-2227.
[35]  项晓东. 原位实时高通量组合材料实验技术[C]//2014新材料国际发展趋势高层论坛. 西安: 2014新材料国际发展趋势高层论坛组委会, 2014: 61-70. Xiang Xiaodong. High throughput in-situ combinatorial materials synthesis and characterization[C]//2014 International Forum of Advanced materials. Xi'an: The organizing committee of 2014 International Forum of Advanced materials, 2014: 61-70.
[36]  Siegel J, Afonso C N, Solis J. Dynamics of ultrafast reversible phase transitions in GeSb films triggered by picosecond laser pulses[J]. Applied Physics Letters, 1999, 75(20): 3102-3104.
[37]  Borg H J, van Schijndel M, Rijpers J C N, et al. Phase-change media for high-numerical-aperture and blue-wavelength recording[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001, 40(3B): 1592-1597.
[38]  Kooi B J, De Hosson J T M. On the crystallization of thin films composed of Sb3.6Te with Ge for rewritable data storage[J]. Journal of Applied Physics, 2004, 95(9): 4714-4721.
[39]  Kooi B J, Groot W M G, De Hosson J T M. In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5[J]. Journal of Applied Physics, 2004, 95(3): 924-932.
[40]  Nirschl T. Write strategies for 2 and 4-bit multi-level phase-change memory[C]//53th IEEE International Electron Device Meeting. Washington DC, USA: Institute of Electrical and Electronics Engineers, 2007: 461-464.
[41]  Chang K S, Green M L, Suehle J, et al. Combinatorial study of Ni-Ti-Pt ternary metal gate electrodes on HfO2 for the advanced gate stack[J]. Applied Physics Letters, 2006, 89(14): 142108.
[42]  Ahmet P, Nagata T, Kukuruznyak D, et al. Composition spread metal thin film fabrication technique based on ion beam sputter deposition[J]. Applied Surface Science, 2006, 252(7): 2472-2476.
[43]  Ahmet P, Yoo Y Z, Hasegawa K, et al. Fabrication of three-component composition spread thin film with controlled composition and thickness[J]. Applied Physics A, 2004, 79(4-6): 837-839.
[44]  Ohmori K. Wide controllability of flatband voltage by tuning crystalline microstructures in metal gate electrodes[C]//53th IEEE International Electron Device Meeting. Washington DC, USA: Institute of Electrical and Electronics Engineers, 2007: 345-348.
[45]  Intel. High- k quantum mechanical tunneling and gate leakage[EB/ OL]. (2009-08-21)[2015-01-20] http://www.intel.com/pressroom/kits/ advancedtech/doodle/ref_HiK-MG/high-k.htm.
[46]  Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35.
[47]  Liu H, Song C, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
[48]  Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53.
[49]  Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. Journal of Electroanalytical Chemistry, 1999, 461 (1/2): 14-31.
[50]  Reddington E, Sapienza A, Gurau B, et al. Combinatorial electrochemistry: A highly prallel, optical screening method for discovery of better electrocatalysts[J]. Science, 1998, 280(5370): 1735-1737.
[51]  Cooper J S, McGinn P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode[J]. Journal of Power Sources, 2006, 163(1): 330-338.
[52]  Gregoire J M, van Dover R B, Jin J, et al. Getter sputtering system for high- throughput fabrication of composition spreads[J]. The Review of Scientific Instruments, 2007, 78(7): 072212.
[53]  Jambunathan K, Jayaraman S, Hillier A C. A multielectrode electrochemical and scanning differential electrochemical mass spectrometry study of methanol oxidation on electrodeposited PtxRuy[J]. Langmuir, 2004, 20(5): 1856-1863.
[54]  Imada M, Fujimori A, Tokura Y. Metal-insulator transitions[J]. Reviews of Modern Physics, 1998, 70(4): 1039-1263.
[55]  McDonough W F, Sun S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[56]  Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358.
[57]  SuryanarayanaC.Mechanicalalloyingandmilling[J].Progressin Materials Science, 2001, 46(1/2): 1-184.
[58]  Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084.
[59]  Han S M, Shah R, Banerjee R, et al. Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation[J]. Acta Materialia, 2005, 53(7): 2059-2067.
[60]  Knauss L A, Pond J M, Horwitz J S, et al. The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films[J]. Applied Physics Letters, 1996, 69(1): 25-27.
[61]  Takeuchi I, Chang H, Gao C, et al. Combinatorial synthesis and evaluation of epitaxial ferroelectric device libraries[J]. Applied Physics Letters, 1998, 73(7): 894-896.
[62]  Kingon A I, Streiffer S K, Basceri C, et al. High-permittivity perovskite thin films for dynamic random-access memories[J]. MRS Bulletin, 1996, 21(7): 46-52.
[63]  Kotecki D E. A review of high dielectric materials for DRAM capacitors[J]. Integrated Ferroelectrics, 1997, 16(1-4): 1-19.
[64]  Copel M, Duncombe P R, Neumayer D A, et al. Metallization induced band bending of SrTiO3 (100) and Ba0.7Sr0.3TiO3[J]. Applied Physics Letters, 1997, 70(24): 3227-3229.
[65]  Zafar S, Jones R E, Chu P, et al. Investigation of bulk and interfacial properties of Ba0.5Sr0.5TiO3 thin film capacitors[J]. Applied Physics Letters, 1998, 72(22): 2820-2822.
[66]  Takeuchi I, Chang K, Sharma R P, et al. Microstructural properties of (Ba, Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. Journal of Applied Physics, 2001, 90(5): 2474-2478.
[67]  Chang H, Gao C, Takeuchi I, et al. Combinatorial synthesis and high throughput evaluation of ferroelectric/ dielectric thin- film libraries for microwaveapplications[J]. Applied Physics Letters, 1998, 72(18): 2185- 2187.
[68]  Chang H, Takeuchi I, Xiang X D. A low-loss composition region identified from a thin-film composition[J]. Applied Physics Letters, 1999, 74(8): 1165-1167.
[69]  Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin- film solar cells[J]. Progress in Photovoltaics: Research and Applications, 2003, 11(4): 225-230.
[70]  Kessler F, Rudmann D. Technological aspects of flexible CIGS solar cells and modules[J]. Solar Energy, 2004, 77(6): 685-695.
[71]  Romeo A, Terheggen M, Abou-Ras D, et al. Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(2/3): 93-111.
[72]  Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/ CuInGaSe2 solar cell with 81.2% fill factor[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 235-239.
[73]  Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625- 1636.
[74]  Brill G, Chen Y, Amirtharaj P M, et al. Molecular beam epitaxial growth and characterization of Cd-based II-VI wide-bandgap compounds on Si substrates[J]. Journal of Electronic Materials, 2005, 34(5): 655-661.
[75]  Funahashi R, Mikami M, Urata S, et al. High-throughput screening of thermoelectric oxides and power generation modules consisting of oxide unicouples[J].MeasurementScienceandTechnology,2005,16(1):70-80.
[76]  Koida T, Kondo M. Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach[J]. Journal of Applied Physics, 2007, 101(6): 063713.
[77]  Koida T, Kondo M. Improved near-infrared transparency in sputtered In2O3-based transparent conductive oxide thin films by Zr-doping[J]. Journal of Applied Physics, 2007, 101(6): 063705.
[78]  Heo G S, Matsumoto Y, Gim I G, et al. Deposition of amorphous zinc indium tin oxide and indium tin oxide films on flexible poly(ether sulfone) substrate using RF magnetron co-sputtering system[J]. Japanese Journal of Applied Physics, 2010, 49(3): 035801.
[79]  VanHest M, Dabney M S, Perkins J D, et al. Titanium-doped indium oxide: A high-mobility transparent conductor[J]. Applied Physics Letters, 2005, 87(3): 032111.
[80]  B?hmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers[J]. The Journal of Chemical Physics, 1993, 99(5): 4201-4209.
[81]  Vladimir I A, Aryasetiawan F, Lichtenstein A I. First- principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method[J]. Journal of Physics: Condensed Matter, 1997, 9(4): 767.
[82]  Yoo Y K, Duewer F, Yang H, et al. Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites[J]. Nature, 2000, 406(6797): 704-708.
[83]  Yoo Y K, Duewer F, Fukumura T, et al. Strong correlation between high-temperature electronic and low-temperature magnetic ordering in La1- xCaxMnO3 continuous phase diagram[J]. Physical Review B, 2001, 63(22): 224421.
[84]  Hanak J J. Multiple- sample- concept in materials research synthesis, compositional analysis and testing of entire multicomponet systems[J]. Journal of Materials Science, 1970, 5(11): 964-971.
[85]  Xiang X D, Sun X, Brice?o G, et al. A combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[86]  Green M L, Takeuchi I, Hattrick- Simpers J R. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials[J]. Journal of Applied Physics, 2013, 113 (23): 231101.
[87]  Young K Y, Xiang X D. Combinatorial material preparation[J]. Journal of Physics: Condensed Matter, 2002, 14: R49-R78.
[88]  Amis E J, Xiang X D, Zhao J C. Combinatorial material science: What's new since edison?[J]. MRS Bulletin, 2002, 8: 297-300.
[89]  Intermolecular, Applications [EB/OL]. (2011-08-11)[2015-01-20].http:// www.intermolecular.com/.
[90]  Eid J, Liang H, Gereige I, et al. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells[J]. Progress in Photovoltaics: Research and Applications, 2013, DOI: 10.1002/pip.2419.
[91]  MaoSS.Highthroughputgrowthandcharacterizationofthinfilm materials[J]. Journal of Crystal Growth, 2013, 379: 123-130.
[92]  Granqvist C G, Lans?ker P C, Mlyuka N R, et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices[J]. Solar Energy Materials and Solar Cells, 2009, 93(12): 2032-2039.
[93]  Lewis K L, Pitt A M, Wyatt-Davies T, et al. Thin film thermochromic materials for non- linear optical devices[J]. MRS Online Proceedings Library, 1994: 374.
[94]  Sella C, Maaza M, Nemraoui O, et al. Preparation, characterization and properties of sputtered electrochromic and thermochromic devices[J]. Surface and Coatings Technology, 1998, 98(1-3): 1477-1482.
[95]  Kamalisarvestani M, Saidur R, Mekhilef S, et al. Performance, materials and coating technologies of thermochromic thin films on smart windows[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 353-364.
[96]  Jin P, Xu G, Tazawa M, et al. Design, formation and characterization of a novel multifunctional window with VO2 and TiO2 coatings[J]. Applied Physics A, 2003, 77(3/4): 455-459.
[97]  Babulanam S M, Eriksson T S, Niklasson G A, et al. Thermochromic VO2 films for energy- efficient windows[J]. Materials and Optics for Solar Energy Conversion and Advanced Lightning Technology, 1987, 692: 8- 18.
[98]  Kang L, Gao Y, Luo H, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 135-138.
[99]  Mlyuka N R, Niklasson G A, Granqvist C G. Thermochromic multilayer films of VO2 and TiO2 with enhanced transmittance[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1685-1687.
[100]  Bassim N D, Schenck P K, Donev E U, et al. Effects of temperature and oxygen pressure on binary oxide growth using aperture- controlled combinatorial pulsed-laser deposition[J]. Applied Surface Science, 2007, 254: 785-788.
[101]  Fujimoto K, Onoda K, Sato M, et al. High-throughput synthesis and evaluation of thermochromic materials by a combinatorial approach[J]. Materials Science and Engineering A, 2008, 475: 52-56.
[102]  AricoAS,BruceP,ScrosatiB,etal.Nanostructuredmaterialsfor advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[103]  Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47 (16): 2930-2946.
[104]  Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[105]  Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
[106]  Fleischauer M D, Topple J M, Dahn J R. Combinatorial investigations of Si- M (M=Cr + Ni, Fe, Mn) thin film negative electrode materials[J]. Electrochemical and Solid-State Letters, 2005, 8(2): A137-A140.
[107]  Fujimoto K, Kato T, Ito S, et al. Development and application of combinatorial electrostatic atomization system“M- ist Combi”: Highthroughput preparation of electrode materials[J]. Solid State Ionics, 2006, 177(26-32): 2639-2642.
[108]  Bottner H, Nurnus J, Gavrikov A, et al. New thermoelectric components using microsystem technologies[J]. Journal of Microelectromechanical Systems, 2004, 13(3): 414-420.
[109]  Snyder G J, Toberer E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114.
[110]  Tritt T M, Subramanian M A. Thermoelectric materials, phenomena, and applications: A bird's eye view[J]. MRS Bulletin, 2006, 31(03): 188-198.
[111]  Otani M, Lowhorn N D, Schenck P K, et al. A high- throughput thermoelectric power- factor screening tool for rapid construction of thermoelectric property diagrams[J]. Applied Physics Letters, 2007, 91 (13): 132102.
[112]  Funahashi R, Urata S, Kitawaki M. Exploration of n-type oxides by high throughput screening[J]. Applied Surface Science, 2004, 223(1- 3): 44-48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133