全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

基于改进蚁群算法与Morphin算法的机器人路径规划方法

DOI: 10.3981/j.issn.1000-7857.2015.03.014, PP. 84-89

Keywords: 动态路径规划,改进蚁群算法,Morphin,算法,拐角处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对动态复杂环境下的机器人路径规划问题,建立栅格地图模型,研究一种改进蚁群算法与Morphin算法相结合的动态路径规划方法。改进蚁群算法引入拐点参数评价路径优劣,并对路径进行拐角处理以及变更拐角处信息素更新机制,使规划的全局路径更加平滑;Morphin算法则在机器人行走时,根据全局路径的局部环境实时规划局部路径,使机器人有效地躲避障碍物。仿真试验结果表明,该方法结合全局规划与局部规划的特点,能够使机器人沿着一条短而平滑的最优路径快速、安全地到达目标点。

References

[1]  姚俊武, 张林仙. 非结构环境下移动机器人路径规划[J]. 科技导报, 2010, 28(22): 82-85. Yao Junwu, Zhang Linxian. Path planning of mobile robot in unstructured environment[J]. Science & Technology Review, 2010, 28 (22): 82-85.
[2]  朱磊, 樊继壮, 赵杰, 等. 基于栅格法的矿难搜索机器人全局路径规划 与局部避障[J]. 中南大学学报: 自然科学版, 2011, 42(11): 3421-3428. Zhu Lei, Fan Jizhuang, Zhao Jie, et al. Global path planning and local obstacle avoidance of searching robot in mine disasters based on grid method[J]. Journal of Central South University: Science and Technology, 2011, 42(11): 3421-3428.
[3]  李学洋, 李悦, 张亚伟. 基于遗传变异蚁群算法的机器人路径规划的 改进[J]. 电子设计工程, 2012, 20(15): 38-40. Li Xueyang, Li Yue, Zhang Yawei. Improved ant colony algorithm based on genetic variation apply in robots path planning[J]. Electronic Design Engineering, 2012, 20(15): 38-40.
[4]  罗荣贵, 屠大维. 栅格法视觉传感集成及机器人实时避障[J]. 计算机 工程与应用, 2011, 47(24): 233-235. Luo Ronggui, Tu Dawei. Vision sensors integration based grid-method for robot real-time obstacle detection[J]. Computer Engineering and Applications, 2011, 47(24): 233-235.
[5]  Dorigo M, Caro G D. Ant Colony Optimization: a new meta-heuristic [C]//Proceedings of 1999 Congress on Evolutionary Computation. New York: IEEE, 1999: 1470-1477.
[6]  段海滨, 王道波, 朱家强, 等. 蚁群算法理论及应用研究的进展[J]. 控 制与决策, 2004, 19(12): 1321-1326. Duan Haibin, Wang Daobo, Zhu Jiaqiang, et al. Development on ant colony algorithm theory and its application[J]. Control and Decision, 2004, 19(12): 1321-1326.
[7]  蔡荣英, 王李进, 吴超, 等. 一种求解旅行商问题的迭代改进蚁群优化 算法[J]. 山东大学学报: 工学版, 2012, 42(1): 6-11. Cai Rongying, Wang Lijin, Wu Chao, et al. A kind of iterative improvement based ant colony optimization algorithm for the traveling salesman problem[J]. Journal of Shandong University: Engineering Science, 2012, 42(1): 6-11.
[8]  Xiong W Q, Wei P. A kind of ant colony algorithm for function optimization[C] //Proceedings of 2002 International Conference on Machine Learning and Cybernetics. New York: IEEE, 2002: 552-555.
[9]  周明秀, 程科, 汪正霞. 动态路径规划中的改进蚁群算法[J]. 计算机科 学, 2013, 40(1): 314-316. Zhou Mingxiu, Cheng Ke, Wang Zhengxia. Improved ant colony algorithm with planning of dynamic path[J]. Computer Science, 2013, 40 (1): 314-316.
[10]  Stützle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem[C]//Proceedings of 1997 IEEE International Conference on Evolutionary Computation. New York: IEEE, 1997: 309-314.
[11]  肖本贤, 刘刚, 余雷, 等. 基于MMAS 的机器人路径规划[J]. 合肥工 业大学学报: 自然科学版, 2008, 31(1): 63-67. Xiao Benxian, Liu Gang, Yu Lei, et al. Robot path planning based on the MAX-MIN ant system[J]. Journal of Hefei University of Technology: Natural Science, 2008, 31(1): 63-67.
[12]  Simmons R, Henriksen L, Chrisman L, et al. Obstacle avoidance and safeguarding for a lunar rover[C]//Proceedings of AIAA Forum on Advanced Developments in Space Robotics. Madison, Wisconsin: AIAA, 1996.
[13]  宋红生, 王东署. 基于改进蚁群算法的移动机器人路径规划[J]. 机床 与液压, 2012, 40(20): 120-125. Song Hongsheng, Wang Dongshu. Path planning for mobile robot based on modified ant colony optimization[J]. Machine Tool & Hydraulics, 2012, 40(20): 120-125.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133