全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

公交浮动车辆到站时间实时预测模型

, PP. 84-89

Keywords: 公共交通,公交浮动车辆,到站时间,路段平均速度,实时预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据公交浮动车辆实时GPS数据,考虑不同时段的路段平均速度、公交车站、信号灯等多因素的影响,建立了一种新的公交车辆到站时间预测模型。通过估计到达下游最临近站点的时间和判断道路上GPS数据的有效性等方法,改善了预测模型的精度,并应用重庆公交车辆数据对模型进行验证。计算结果表明该模型能够实时预测公交浮动车辆到达下游站点的时间,预测精度优于现有方法,在高峰时段预测误差小于9%,在非高峰时段预测误差约为6%,并对各种道路交通条件具有较好的适应性。

References

[1]  SUN Di-hua, LUO Hong, FU Li-ping, et al. Predicting bus arrival time on the basis of global positioning system data[J]. Transportation Research Record, 2007(2034): 62-72.
[2]  PADMANABAN R P S, DIVAKAR K, VANAJAKSHI L, et al. Development of a real-time bus arrival prediction system for Indian traffic conditions[J]. Intelligent Transport System, 2010, 4(3): 189-200.
[3]  YANG J S. A study of travel time modeling via time series analysis[C]∥IEEE. Proceedings of 2005 IEEE ControlApplications Conference. Piscataway: IEEE, 2005: 855-860.
[4]  熊文华,徐建闽,林 思.基于BP网络的浮动车与线圈检测数据融合模型[J].计算机仿真,2009,26(9):235-238. XIONG Wen-hua, XU Jian-min, LIN Si. A fusion model for floating vehicle and loop detector data based on BP network[J]. Computer Simulation, 2009, 26(9): 235-238.(in Chinese)
[5]  CHEN De-wang, ZHANG Kun, LIAO Tao. Practical travel time prediction algorithms based on neural network and data fusion for urban expressway[C]∥IEEE. 2010 Sixth Inter-national Conference of Natural Computation. Piscataway: IEEE, 2010: 1754-1758.
[6]  LEE Y. Freeway travel time forecast using artifical neural networks with cluster method[C]∥IEEE. 12th International Conference of Information Fusion. Piscataway: IEEE, 2009: 1331-1338.
[7]  于 滨,蒋永雷,于 博,等.支持向量机在公交车辆运行时间预测中的应用[J].大学海事大学学报,2008,34(4):158-160. YU Bin, JIANG Yong-lei, YU Bo, et al. Application of support vector machines in bus travel time prediction[J]. Journal of Dalian Maritime University, 2008, 34(4): 158-160.(in Chinese)
[8]  姚宝珍,杨成永,于 滨.动态公交车辆运行时间预测模型[J].系统工程学报,2010,25(3):365-370. YAO Bao-zhen, YANG Cheng-yong, YU Bin. Dynamic bus travel-time prediction model[J]. Journal of Systems Engin-eering, 2010, 25(3): 365-370.(in Chinese)
[9]  CHEN Peng, YAN Xin-ping, LI Xu-hong. Bus travel time prediction based on relevance vector machine[C]∥IEEE.2009 International Conference on Information Engineering and Computer Science. Piscataway: IEEE, 2009: 1-4.
[10]  计会凤,徐爱功.相关法自适应滤波在动态行程时间预测中的应用研究[J].测绘科学,2010,35(2):158-160. JI Hui-feng, XU Ai-gong. The feasibility analysis of the relevant adaptive filtering in the dynamic travel time prediction[J]. Science of Surveying and Mapping, 2010, 35(2): 158-160.(in Chinese)
[11]  李清泉,尹建忠,贺奋琴.面向道路网的GPS浮动车覆盖率模型研究[J].武汉大学学报:信息科学版,2009,34(6):715-718. LI Qing-quan, YIN Jian-zhong, HE Fen-qin. A coverage rate model of GPS floating car for road networks[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 715-718.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133