全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阻塞流状态下城市快速路交通流时空特性

, PP. 73-79

Keywords: 交通工程,城市快速路,阻塞流,时间特性,空间特性,自相关函数,互相关系数,G-P算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

教育部重点实验室,北京100044;3.长安大学汽车学院,陕西西安710064)根据时间序列中的自相关函数法,判断交通流量、时间占有率与平均速度的时间序列的平稳性。根据混沌分析中的G-P算法,将非平稳的交通流参数时间序列转化为平稳的交通流参数时间序列。引入了互相关系数的概念,在阻塞流状态下,计算了上游断面对观测断面以及观测断面对下游断面的互相关系数,并应用K-S检验判断阻塞流状态下城市快速路进出口匝道的车辆到达特性。研究结果表明交通流量和时间占有率属于非平稳时间序列,平均速度属于平稳时间序列;当时间延迟分别取2、3、5min时,在阻塞流状态下,重构的交通流量相空间嵌入维数为4;观测断面的交通流参数不仅受相邻上游断面交通流参数传递的影响,而且也受相邻下游断面交通流参数回溯的影响;在阻塞流状态下,城市快速路进出口匝道车辆到达特性符合负二项分布。

References

[1]  董春娇.多状态下城市快速路网交通流短时预测理论与方法研究[D].北京:北京交通大学,2011. DONG Chun-jiao. Theoretical research for short-term traffic flow prediction in multi traffic states on urban expressway network[D]. Beijing: Beijing Jiaotong University, 2011.(in Chinese)
[2]  WANG Yi-bing, PAPAGEORGIOU M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach[J]. Transportation Research Part B: Methodological, 2005, 39(2): 141-167.
[3]  董春娇,邵春福,诸葛承祥.混合状态下城市快速路交通流短时预测[J].物理学报,2012,61(1):1-9. DONG Chun-jiao, SHAO Chun-fu, ZHUGE Cheng-xiang. Short-term traffic flow prediction for multi traffic states on urban expressway network[J]. Acta Physica Sinica, 2012, 61(1): 1-9.(in Chinese)
[4]  KERNER B S. Three-phase traffic theory and highway capacity[J]. Physica A, 2004, 333(0): 379-440.
[5]  石小法,喻军皓.快速城市化地区中等城市交通特性[J].交通运输工程学报,2010,10(2):88-94. SHI Xiao-fa, YU Jun-hao. Traffic characteristics of medium city in fast urbanization area[J]. Journal of Traffic and Transportation Engineering, 2010, 10(2): 88-94.(in Chinese)
[6]  姚荣涵,王殿海.交通流时空描述模型[J].公路交通科技,2008,25(10):111-116. YAO Rong-han, WANG Dian-hai. Time-space description model of traffic flow[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10): 111-116.(in Chinese)
[7]  DONG Chun-jiao, SHAO Chun-fu, ZHAO Dan, et al. Short-term traffic flow forecasting based on periodicity similarity[C]∥IEEE. Proceeding of the 2011 First IRAST International Conference on Data Engineering and Internet Technology. Bali: IEEE, 2011: 148-151.
[8]  CHIABAUT N, BUISSON C, LECKERCQ L. Fundemental diagram estimation through passing rate measurements in congestion[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(2): 355-359.
[9]  HELBING D. Derivation of a fundamental diagram for urban traffic flow[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2009, 70(2): 229-241.
[10]  KERNER B S, KLENOV S L, HILLER A. Empirical test of a microscopic three-phase traffic theory[J]. Nonlinear Dynamics, 2007, 49(4): 525-553.
[11]  DONG Chun-jiao, SHAO Chun-fu, LI Xia. Short-term traffic flow forecasting of road network based on spatial-temporal characteristics of traffic flow[C]∥IEEE. 2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles: IEEE, 2009: 645-650.
[12]  HEIBING D. Traffic and related self-driven many-particle systems[J]. Reviews of Modern Physics, 2001, 73(4): 1067-1141.
[13]  GOMES G, HOROWITZ R. Optimal freeway ramp metering using the asymmetric cell transmission model[J]. Transportation Research Part C: Emerging Technologies, 2006, 14(4): 244-262.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133