全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
高压电器  2015 

QGA-SVM在弓网滑动电接触下的最优载荷研究

, PP. 133-138

Keywords: 量子遗传,支持向量机,滑动电接触,最优载荷

Full-Text   Cite this paper   Add to My Lib

Abstract:

弓网滑动电接触过程中,电、力、速多个物理域的复杂耦合影响列车的高速、重载、稳定运行。为了提高载荷最优控制,使摩擦副摩擦磨损与受流稳定性达到相对最佳,利用量子遗传算法优化支持向量机的相关参数,建立了受电弓滑板磨损率的预测模型。经过MATLAB仿真结果表明,量子遗传算法比遗传算法有更好的优化性能,建立的模型能够稳定预测滑板磨损率,对选取最优载荷、研究载流摩擦副材料具有重要意义。

References

[1]  WANG W G, DONG A P, WU G N, et al. Study on characterization of electrical contact between pantograph and catenary[J]. 2011 IEEE 57th Holm Conference on Electrical Contacts.[S.l.]:IEEE, 2011:1-6.
[2]  李灵敏,贾步超,陈光雄.接触网系统受流质量影响因素的试验研究[J]. 润滑与密封,2008,33(3):32-35. LI Lingmin, JIA Buchao, CHEN Guangxiong. Experimental study on the factors affecting the current-receiving quality of the contact rail/collector shoe systems[J]. Lubrication Engineering, 2008,33(3):32-35.
[3]  陈 立,吴广宁,高国强,等.高速铁路弓网电接触研究综述[J]. 机车电传动,2011(5):6-9. CHEN Li, WU Guangning, GAO Guoqiang, et al. Research reviews on electrical contact between pantograph and catenary of high-speed railway[J]. Electric Drive for Locomotives, 2011(5):6-9.
[4]  BUCCA G, COLLINA A. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009(266): 46-59.
[5]  张婧琳,孙乐民,上官宝,等.电气化铁路受电弓滑板材料的发展[J]. 材料热处理技术,2010,39(10):110-115. ZHANG Jinglin, SUN Lemin, SHANGGUAN Bao, et al. Development of material for pantograph slide plate of electric railway[J]. Material & Heat Treatment, 2010,39 (10): 110-115.
[6]  任志玲.弓网系统载流摩擦磨损性能及其最优载荷研究[D]. 葫芦岛: 辽宁工程技术大学,2012. REN Zhiling. Research on the behaviors of friction and wear with electric current and the optimal load of pantograph-catenary system[D]. Huludao: Liaoning Technology University, 2012.
[7]  王万岗,梁明亮,吴广宁,等.弓网系统静态接触电阻特性研究[J]. 高压电器,2012,48(1):30-34. WANG Wangang, LIANG Mingliang, WU Guangning,et al. Characteristics of static contact resistance between pantograph and catenary[J]. High Voltage Apparatus, 2012, 48(1):30-34.
[8]  丁 涛.电气化铁路受电弓/接触线摩擦磨损性能及电特性研究[D]. 四川: 西南交通大学,2010. DING Tao.Friction and wear behaviors and electrical properties of pantogragh strip/contact wire materials in electric railway[D]. Sichuan: Southwest Jiaotong Universit,2010.
[9]  涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D]. 长沙:湖南大学,2009. TU Chuanjun. Preparation and investigation of wear behavior and anti-wear mechanism of resin-type pantograph contact strip materials[D]. Chuangsha: Hunan University,2009.
[10]  REN Zhiling, GUO Fengyi. Development of high performance sliding electrical contact testing instrument[C]//The 24rd International Conference on Electrical Contacts.Saint-Malo,France:IEEE,2008:423-427.
[11]  郭凤仪,任志玲,马同立,等.滑动电接触磨损过程变化的实验研究[J]. 电工技术学报,2010,25(10):24-29. GUO Fengyi,REN Zhiling, MA Tongli,et al. Experimental research on wear process variability of the sliding electric contact[J]. Transacyions of China Electric Technical Society,2010,25(10):24-29.
[12]  黄伯虎,段振华.量子遗传算法在Web服务选择中的应用[J]. 西安电子科技大学学报,2010,37(1):56-61. HUANG Bohu, DUAN Zhenhua. Application of the quantum genetic algorithm in web services selection[J]. Journal of Xidian University, 2010,37(1):56-61.
[13]  王艳萍,刘新贵.基于量子遗传算法的软件测试数据自动生成[J]. 计算机测量与控制,2010,18(1):34-37. WANG Yanping, LIU Xingui. Automatically generate software test data based on quantum genetic algorithm[J]. Computer Measurement & Control, 2010,18(1):34-37.
[14]  刘红文,张葛祥.基于改进量子遗传算法的电力系统无功优化[J]. 电网技术,2008,32(12):35-38. LIU Hongwen,ZHANG Gexiang. A reactive power optimization method based on improved quantum-inspired genetic algorithm[J]. Power System Technology,2008,32(12):35-38.
[15]  王 涛,王洋洋,郭长娜,等. QGA-RBF 神经网络在矿井瓦斯涌出量预测中的应用[J]. 传感技术学报,2012,25(1):119-223. WANG Tao, WANG Yangyang, GUO Changna, et al. Application of QGA-RBF for predicting the amount of mine gas emission[J]. Chinese Journal of Sensors and Actuators,2012,25(1):119-223.
[16]  查全民,汪荣贵,何 畏.基于量子遗传聚类的入侵检测方法[J]. 计算机应用研究,2010,27(1):240-243. ZHA Quanmin, WANG Ronggui HE Wei. Intrusion detection algorithm based on quantum genetic clustering[J]. Application Research of Computers, 2010,27(1):240-243.
[17]  丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(1):2-10. DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
[18]  VLADIMIR C,YUNQIAN M A. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks,2004,17(1):113-126.
[19]  JUSHUI M, JAMES T, SIMON P. Accurate on-line support vector regression[J]. Neural Computation,2003,15 (11):2683-2703.
[20]  郭凤仪,郭长娜,王洋洋. MPSO-SVM 的压力传感器的非线性校正研究[J]. 传感技术学报,2012,25(2):188-192. GUO Fengyi, GUO Changna, WANG Yangyang.Research on nonlinear correction of pressure sensor based on MPSO-SVM[J]. Chinese Journal of Sensors and Actuators, 2012,25(2):188-192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133