全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于减法聚类模糊神经网络的砂土液化势判别

, PP. 172-177

Keywords: 减法聚类,自适应模糊神经网络,液化,判别

Full-Text   Cite this paper   Add to My Lib

Abstract:

砂土地震液化问题是岩土地震工程学的重要研究课题之一。在分析模糊神经网络原理的基础上,利用减法聚类算法对自适应模糊推理系统进行优化,并建立了砂土地震液化的模糊神经网络模型。然后,将该模型用于实际工程的砂土液化判别中,并与传统砂土液化判别方法结果进行对比。判别结果表明文中建立的模糊神经网络模型具有较强的学习功能,用于砂土地震液化判别中是可行的和有效的。

References

[1]  Takagit, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEEE Transactions on Systems, Managenment and Cybernetics,1985,15(1):116-132.
[2]  Chiu S L. Fuzzy model identification based on duster estimation[J].Journal of Intelligent and Fuzzy Systems, 1994,2(3):267-278.
[3]  Seed H B,Idriss I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechancis and Foundations Division, ASCE, 1971,97(9):1249-1273.
[4]  Seed H B, Tokimatsu K, Harder L F, et al. Influence of SPT procedures in soil liquefaction resistence evaluations[J]. Journal of Geotechnical Enigeering Division, ASCE,1985,111(12):1425-1445.
[5]  Liao S C C, Veneziano D, Whitman R V. Regression models for evaluating liquefaction probability[J]. Journal of the Geotechnical Engineering, ASCE, 1988,114(4):389-411.
[6]  GB50011-2010建筑抗震设计规范[S]. GB50011-2010 Code for Seismic Design of Building[S].(in Chinese)
[7]  任文杰. 人工神经网络在地基土液化判别及等级评价中的应用.天津:河北工业大学,2002. REN Wenjie. Application of artificial neural network in estimation and grade evaluation of foundation soil liquefaction. Tianjin: Hebei University of Technology,2002.(in Chinese)
[8]  刘 洋,孔 戈,周 健. 液化场地地震反应的离散元数值模拟[J].地震工程与工程振动,2011,31(1):155-160. LIU Yang, KONG Ge, ZHOU Jian. Numerical simulation of earthquake response for liquefiable site using discrete element method[J]. Journal of Eearthquake Engineering and Engineering Vibration, 2011, 31(1): 155-160.(in Chinese)
[9]  薛新华,陈 群. 基于GRNN的砂土液化危害等级评价模型研究[J].四川大学学报:工程科学版,2010,42(1):42-47. XUE Xinhua, CHEN Qun. Study on hazard degree evaluation of sand liquefaction based on the generalized regression neural network[J].Journal of Sichuan University(Engineering Science Edition),2010,42(1):42-47.(in Chinese)
[10]  石兆吉,张荣祥,顾宝和. 砂土液化判别和评价综合方法研究[J].地震工程与工程振动,1997,17(1):82-88. SHI Zhaoji, ZHANG Rongxiang, GU Baohe. Study on synthetic methods for criteria and appraisal of sand liquefaction[J]. Journal of Eearthquake Engineering and Engineering Vibration,1997,17(1):82-88.(in Chinese)
[11]  薛新华,张我华,刘红军. 砂土地震液化的模糊综合评判法[J].重庆建筑大学学报,2006,28(1):55-58. XUE Xinhua, ZHANG Wohua, LIU Hongjun. Comprehensive fuzzy evaluation method for sand liquefaction[J].Journal of Chongqi Jianzhu University,2006,28(1):55-58.(in Chinese)
[12]  陈国兴,李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J].岩土工程学报,2006,28(3):301-305. CHEN Guoxing, LI Fangming. Probabilistic estimation of sand liquefaction based on neural network model of radial basis function[J].Chinese Journal of Geotechnical Enigneering,2006,28(3):301-305.(in Chinese)
[13]  刘红军,薛新华. 砂土地震液化预测的人工神经网络模型[J].岩土力学,2004,25(12):1942-1946,1950. LIU Hongjun, XUE Xinhua. Artifical neural network model for prediction of seismic liquefaction of sand soil[J].Rock and Soil Mechanics, 2004,25(12):1942-1946,1950.(in Chinese)
[14]  李方明,陈国兴. 基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报,2005,14(2):108-114. LI Fangming, CHEN Guoxing. Saturated sand liquefaction potential estimation method based on BP neural network[J].Journal of Natural Disasters,2005,14(2):108-114.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133