全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RS与PSO-LSSVR的地震伤亡人数预测

DOI: 10.13197/j.eeev.2015.06.226.rennn.031, PP. 226-231

Keywords: 地震伤亡,粗糙集,支持向量回归机,粒子群优化,BP神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对地震伤亡资料的综合考察研究,本文构建了影响地震伤亡人数的指标集,利用粗糙集理论约简此指标结构,建立最小二乘支持向量回归机预测模型预测伤亡人数,并用粒子群优化算法对模型参数进行优化。最后,将模型运用于云南地震伤亡人数预测,结果和RS-BP神经网络预测模型对比分析,验证了该模型预测的有效性。又将模型应用于芦山和玉树地震死亡人数的预测,验证了模型的适用性。实验结果表明该模型能在地震发生后,给决策者提供人员救护、安置以及应急物资供应、统筹调度的有效依据。

References

[1]  钱枫林,崔健. BP神经网络模型在应急需求预测中的应用--以地震伤亡人数预测为例[J].中国安全科学学报, 2013, 23(4):20-25. QIAN Fenglin, CUI Jian.A pplication of BP neural network analysis in forecasting emergency demand--a case study on earthquake casualty forecasting[J]. China Safety Science Journal, 2013, 23(4):20-25.(in Chinese)
[2]  张文修,吴伟志,梁吉业,等. 2001粗糙集理论与方法[M].北京:科学出版社, 2001. ZHANG Wenxiu, WU Weizhi, LIANG Jiye, et al. Rough set theory and method[M]. Beijing:Science Press, 2001.(in CInese)
[3]  Suykens J A K, Vandewalle J.Least squares support machine classilier[J]. Neural Processing Letters, 1999, 9(3):293-300.
[4]  Van G T, Suykens J A K. Financial time series prediction using least squares support vector machine within the evidence framework[J]. IEEE Transactions on Neural Networks, 2001, 12(4):809-821.
[5]  Esen H, Ozgen F, Esen M. Modeling of a new solar air heater through least squares support vector machine[J]. Expert Systems with Applications, 2009, 36(7):10673-10682.
[6]  龙文,梁昔明. PSO-LSSVM灰色组合模型在地下水埋深预测中的应用[J].系统工程理论与实践, 2013, 33(1):243-248. LONG Wen,LIANG Ximing. LSSVM grey combined forecasting model based on PSO and its application in groundwater dynamic prediction[J].Theory & Practice, 2013, 33(1):243-248.(in CInese)
[7]  马文涛.参数优化LSSVM的巷道围岩松动圈预测研究[J].岩土力学, 2007, 28(增):460-464. MA Wentao. A predicative study of loosening zones around roadways with least square support vector machines method with optimized parameters[J]. Rock and Soil Mechanics, 2007, 28(S0):460-464.(in CInese)
[8]  李炜,石连生.基于PSO-LSSVM的研究法辛烷值预测建模[J].化工自动化及仪表, 2008, 35(2):25-27. LI Wei, SHI Liansheng. Forecasting Model of Research O ctane Number Based on PS0-LSSVM[J]. Control & Instrument Experiments of Chemical Engineering, 2008, 35(2):25-27.(in CInese)
[9]  李永强.云南人员震亡研究[D].合肥:中国科学技术大学, 2009. LI Yongqiang. Research on yunnan earthquake casualty[D]. Hefei:University of Science and Technology of China, 2009.(in Chinese)
[10]  刘金龙,林均岐.基于震中烈度的地震人员伤亡评估方法研究[J].自然灾害学报, 2012, 21(5):113-119. LIU Jinlong, LIN Junqi. Study on assessment method for earthquake casualty based on evidential intensity[J]. Journal of Natural Disasters, 2012, 21(5):113-119.(in Chinese)
[11]  张洁,高惠瑛,刘琦.基于汉川地震的地震人员伤亡预测模型研究[J].中国安全科学学报, 2011, 21(3):59-64. ZHANG Jie, GAO Huiying, LIU Qi. Study on earthquake casualty forecasting model based on Wenchuan earthquake[J]. China Safety Science Journal, 2011, 21(3):59-64.(in Chinese)
[12]  施伟华,陈坤华,谢英情,等.云南地震灾害人员伤亡预测方法研究[J].地震研究, 2012, 35(3):387-392. SHI Weihua, CHEN Kunhua, XIE Yingqing, et al. Prediction method research on casualties due to earthquake disaster in Yunnan[J]. Journal of Seismological Research, 2012, 35(3):387-392.(in Chinese)
[13]  高惠瑛,李清霞.地震人员伤亡快速评估模型研究[J].灾害学, 2010, 25(增):275-277. GAO Huiying, LI Qingxia. Study on the rapid evaluation model for seismic casualties[J]. Journal of Catastrophology, 2010, 25(S0):275-277.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133