全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进最大信噪比的独立成分分析单通道语音增强算法

Keywords: 独立成分分析,单通道,小波系数,二路观测信号,语音增强

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有基于独立成分分析(ICA)的盲源分离算法在单通道语音增强中的不稳定性和信噪比低的问题,提出了新的基于最大信噪比的ICA语音增强算法.该算法首先用带噪语音直接乘以二维向量,并经过列满秩的转换,得到既具有源信号特性、又不会引入新噪声的二路观测信号,保证了系统的稳定性;再结合用小波系数改进的最大信噪比的ICA算法来实现,为增强的效果和提高信噪比提供了依据.实验结果分析表明,该算法是稳定的,且能有效地提高信噪比的值.

References

[1]  Jancovic P, Zou X, Kokuer M. Speech enhancement based on Sparse code shrinkage employing multiple speech models[J]. Speech Communication, 2012, 54(1):108-118.
[2]  Prasad R, Saruwatari H, Shikano K. Enhancement of speech signals separated from their convolutive mixture by FDICA algorithm[J]. Digital Signal Processing, 2009, 19(1):127-133.
[3]  Davies M E, James C J. Source separation using single channel ICA[J]. Signal Processing, 2007, 87(8):1819-1832.
[4]  Li Hongyan, Zhao Jumin, Wang Huakui. Single channel speech enhancement algorithm based on independent component analysis[J]. Computer Engineering, 2007, 33 (24): 35-36.
[5]  李蕴华. 基于盲源分离的单通道语音信号增强[J].计算机仿真,2008,25(7): 310-313. Li Yunhua. Single channel speech enhancement based on blind source separation[J]. Computer Simulation, 2008,25(7):310-313.(in Chinese)
[6]  Kocinski J, Drgas S, Ozimek E. Evaluation of blind source separation for different algorithms based on second order statistics and different spatial configurations of directional microphones[J]. Applied Acoustics, 2012,73(2):109-116.
[7]  罗志增,曹铭.基于最大信噪比盲源分离的脑电信号伪迹滤波算法[J].电子学报,2011,39(12):2926-2931. Luo Zhizeng, Cao Ming. An algorithm to filter artifacts in EEG based on blind source sepatation of maximum signal noise ratio[J]. Acta Electronica Sinica, 2011,39(12):2926-2931.(in Chinese)
[8]  张小兵,马建仓,陈翠华.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. Zhang Xiaobing, Ma Jiancang, Chen Cuihua. A blind source separation algorithm based on maximum signal noise ratio[J]. Computer Simulation, 2006,23(10):72-75.(in Chinese)
[9]  Ramirez R R, Kopell B H, Butson C R, et al. Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening,and source imaging[J]. Neuro Image, 2011,56(1):78-92.
[10]  Shi Zhenwei, Zhang Hongjuan, Jiang Zhiguo. Hybrid linear and nonlinear complexity pursuit for blind source separation[J]. Journal of Computational and Applied Mathematics, 2012,236(14):3434-3444.
[11]  Sun Shijun, Peng Chenglin, Hou Wensheng, et al. Blind source separation with time series variational Bayes expectation maximization algorithm[J]. Digital Signal Processing, 2012,22(1):17-33.
[12]  彭煊,刘金福,王炳锡.基于独立分量分析的语音增强[J].信号处理, 2002,18(5):477-479. Peng Xuan, Liu Jinfu,Wang Bingxi. ICA-based speech enhancement[J]. Signal Processing, 2002,18(5):477-479.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133