全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

增量学习灰度与轮廓模板的行人跟踪方法

Keywords: 行人跟踪,云台摄像机,灰度和轮廓模板

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决云台摄像机的行人跟踪问题,提出了一种基于粒子滤波的行人跟踪算法.该方法在目标灰度模板以外,学习并更新行人目标的轮廓模板.考虑到行人轮廓因为视角变化可能发生的突然改变,算法准备了多套从不同视角观测的轮廓模板,并且逐渐更新它们使之可以逐渐捕捉目标的轮廓特征.在多段云台摄像机拍摄的监控视频上测试了所提出的算法.实验结果显示,该算法比其他先进的跟踪算法有更长的准确跟踪时间.

References

[1]  Lucase B D, Kanade T. An iterative image registration technique with an application to stereo vision //Proceedings of the 7th International Joint Conferences on Artificial Intelligence (IJCAI \'81). Vanconver, Canada: , 1981:674-679.
[2]  Shi J, Tomasi C. Good features to track . New York: Cornell University, 1993.
[3]  Hager G, Belhumeur P. Real-time tracking of image regions with changes in geometry and illumination //Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR’96). Washingtong, DC., USA: , 1996:403-410.
[4]  Yu T, Wu Y. Differential tracking based on spatial appearance model(sam) //Proceedings of Computer Vision and Pattern Recognition. New York: , 2006:720-727.
[5]  Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998,29:5-28.
[6]  Numiaro K, Koller-Meier E. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003,21(1):99-110.
[7]  Ross D A, Lim J. Incremental learning for robust visual tracking //Proceedings of Computer Vision and Pattern Recognition 2005. San Diego, USA: , 2005:125-141.
[8]  Cootes T F, Taylor C J. Statistical models of appearance for computer vision . Manchester, United Kingdom: Manchester University, 2004.
[9]  Levy A, Lindenbaum M. Sequential karhunen-loeve basis extraction and its application to image[J]. IEEE Transaction on Image Processing, 2000,9:1371-1374.
[10]  Zhang Y, Wang J. Convergence analysis of complementary candid incremental principal component anaylysis . East Lansing, Michigan, USA: Michigan State University, 2001.
[11]  Kwon J, Lee K M. Visual tracking via geometric particle filtering on the affine group with optimal importance functions //Proceedings of Computer Vision and Pattern Recognition 2009. Miami, USA: , 2009:991-998.
[12]  Isard M, Blake A. Icondensation: unifying low-level and high-level tracking in a stochastic framework //Proceedings of the 5th European Conference of Computer Vision. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology, 1995:893-908.
[13]  Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance // Proceedings of the 9th IEEE International Conference of Computer Vision. Nice, France: , 2003: 734-741.
[14]  Wu T, Zhu S C. A numerical study of the bottom-up and top-down inference processes in and-or graphs[J]. International Journal of Computer Vision, 2010,93(2):226-252.
[15]  Schinka J A. Handbook of psychology: research methods in psychology[M]. New Jersey: John Wiley and Sons, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133