Wolf K B,Krotzsch G. Geometry and dynamics in the fractional discrete Fourier transform[J]. J Opt Soc Am A, 2007,24:651-658.
[2]
Tao R, Deng B, Zhang W, et al. Sampling and sampling rate conversionof band limited signals in the fractional Fourier transform domain[J]. IEEE Transactions on Signal Processing, 2008,56:158-171.
[3]
Amari S. Differential geometrical methods in statistics[M]. Berlin: Springer-Verlag, 1985.
[4]
Amari S, Nagaoka H. Methods of information geometry[M]. Oxford: Oxford University Press, 2000.
[5]
Cafaro C, Ali S A. Jacobi fields on statistical manifolds of negative curvature[J]. Physica D, 2007,234(1):70-80.
[6]
Casetti L, Pettini M, Cohen E G D. Geometric approach to Hamiltonian dynamics and statistical mechanics[J]. Physics Reports, 2000,337(3):237-341.
[7]
Duan X M, Sun H F. Jacobi fields on the manifold of nonsingular hermitematrices[J]. Journal of Beijing Institute of Technology, 2011,31(11):1375-1378.(in Chinese)
[8]
Tanaka F, Komaki F. The sectional curvatures of AR model manifolds[J]. Tensor N S, 2003,64:131-143.
[9]
Tanaka F, Komaki F. Asymptotic expansion of the risk difference of the Bayesianspectral density in the ARMA model[J]. METR, 2005,2005:1-31.
[10]
Kumon M,Amari S. Geometrical theory of higher-order asymptotic of test[J]. Interval Estimator and Conditional Inference, Proc Roy Soc London Set. A, 1983,387:429-458.
[11]
弗洛斯,彭林玉,孙华飞,等.功率谱的信息几何[J].北京理工大学学报,2013,33(3):327-330. Syed Ferozshah, Peng Linyu, Sun Huafei, et al. Information geomtry of power spectra[J]. Transactions of Beijing Institure of Technology, 2013,33(3):327-330. (in Chinese)