全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高效率节能车点火时刻的最优设计

Keywords: 高效率节能车,粒子群算法(PSO),点火时刻,约束条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对高效率节能车点火时刻的最优设计问题,本文作者提出了节能车点火设计问题的目标函数和约束条件,并将所涉及的约束条件分为强约束条件和弱约束条件,易于选择惩罚项加权系数,并阐述了基于粒子群算法的最优点火时刻优化算法.仿真实验结果表明:在400m标准跑道总路程为2000m的情况下,最优的点火次数为13次,同时也给出了具体的点火时刻、点火位置和危险的驾驶区域,从而起到了智能辅助驾驶的作用.

References

[1]  Zhang J R, Zhang J, Lok T M, et al. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J]. Applied Mathematics and Computation, 2007,185(2):39-43.
[2]  Guo Q J, Yu H B. A hybrid PSO-GD based intelligent method for machine diagnosis[J]. Digital Signal Processing, 2006,16(4):402-418.
[3]  Parrott D, Li X D. Locating and tracking multiple dynamics optima by a particle swarm model using speciation[J]. IEEE Transactions on Evolutionary Computation, 2006,10(4):440-458.
[4]  Gaing Z L. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Transactions on Energy Conversion, 2004,19(2):384-391.
[5]  Shi Y H, Eberhart R C. A modified particle swarm optimizer[C]//Proceedings of IEEE World Congress on Computational Intelligence. Alaska, USA: IEEE, 1998:69-73.
[6]  Clerc M, Kenndey J. The particle swarm-exploration, stability, and convergence in a multidimensional complex space[J] Proceedings of IEEE Transactions on Evolutionary Computation, 2002, 6(1):58-73.
[7]  Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. USA: Piscataway, IEEE, 1995:1942-1948.
[8]  Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Sysposium on Micro Machine and Human Science. Nagoya, Japan:[s.n.], 1995:39-43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133