全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

竞争粒子群算法及其在UUV航迹规划中的应用

Keywords: 粒子群,优化,UUV,航迹规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种竞争粒子群算法.在粒子进化过程中,每个粒子每次进化都会向两个速度方向进化,其中一个速度方向侧重于全局搜索,另一个速度方向侧重于局部搜索,然后对得到的两个同源子粒子进行比较,保留较优的子粒子,淘汰较差的子粒子,最终得到下一代子粒子种群.利用几个测试函数对算法性能进行分析验证,并与BPSO、LWPSO、EPSO、TVAC算法进行比较,结果表明所提算法在搜索精度、稳定性以及搜索速度上均优于BPSO、LWPSO、EPSO、TVAC算法.最后,将竞争粒子群算法应用于UUV航迹规划中,得到了较优的规划航迹.

References

[1]  Rao D, Williams S B. Large-scale path planning for underwater gliders in ocean currents[C]//Proceedings of Australasian Conference on Robotics and Automation. Sydney:[s.n.],2009.
[2]  Eichhorn M. Solutions for practice-oriented requirements for optimal path planning for the AUV "Slocum Glider"[J]. Oceans, 2010:1-10.
[3]  Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.[S.l.]: IEEE,1995,4(2):1942-1948.
[4]  Chander A, Chatterjee A, Siarry P. A new social and momentum component adaptive PSO algorithm for image segmentation[J]. Expert Systems with Applications, 2011,38(5):4998-5004.
[5]  Gupta S, Devi S. Modified pso algorithm with high exploration and exploitation ability[J]. International Journal of Software Engineering Research and Practices, 2011,1(1):15-19.
[6]  Chuanwen J, Bompard E. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation[J]. Mathematics and Computers in Simulation, 2005,68(1):57-65.
[7]  Feng C S, Cong S, Feng X Y. A new adaptive inertia weight strategy in particle swarm optimization[C]//Proceedings of IEEE Congress on Evolutionary Computation. [S.l.]: IEEE, 2007:4186-4190.
[8]  Ratnaweera A, Halgamuge S, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004,8(3):240-255.
[9]  Lei W, Zhao C X. The research of PSO algorithms with non-linear time-decreasing inertia[C]//Proceedings of the International Conference on Intelligent Control and Automation.[S.l.]: IEEE, 2008:4002-4005.
[10]  Dong C, Wang G, Chen Z. The inertia weight self-adapting in PSO[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. [S.l.]: IEEE, 2008:5313-5316.
[11]  陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. Chen Guochu, Yu Jinshou. Two sub-swarms particle swarm optimization algorithm and its application[J]. Control Theory & Applications, 2007,24(2):294-298. (in Chinese)
[12]  王华秋,廖晓峰.一种并行协同粒子群优化的支持向量机预测模型[J].控制理论与应用,2007,23(6):934-940. Wang Huaqiu, Liao Xiaofeng. Prediction model of support vector machine based on parallel cooperative particle swarm optimization[J]. Control Theory & Applications, 2007,23(6):934-940.(in Chinese)
[13]  Parsopoulos K E, Plagianakos V P, Magoulas G D, et al. Improving the particle swarm optimizer by function "stretching"[M]//Advances in Convex Analysis and Global Optimization. [S.l.]: Springer, 2001:445-457.
[14]  Witt J, Dunbabin M. Go with the flow: optimal AUV path planning in coastal environments[C]//Proceedings of Australian Conference on Robotics and Automation.Sydney:[s.n.],2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133