全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种改进的颜色粒子滤波目标跟踪算法

Keywords: 目标跟踪,粒子滤波,颜色局部熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法.算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目.实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪.

References

[1]  Gordon N J, Salmond D J. Novel approach to non-linear /non-Gaussian Bayesian state estimation[C]//Radar and Signal Processing, Proceedings F. [S.l.]: IET Digital Library, 1993,140(2):107-113.
[2]  Pan P, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008,18(9):1268-1279.
[3]  Isard M, Blake A. Condensation—conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998,29(1):5-28.
[4]  Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[C]//Proceedings of the European Conference on Computer Vision, 2002:661-675.
[5]  Nummiaro K, Koller-Meier E B, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003,21(1):100-110.
[6]  Birchfield S T, Rangarajan S. Spatiograms versus histograms for region-based tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:[IEEE], 2005:1158-1163.
[7]  del-Blanco C R, Garcia N, Salgado L, et al. Object tracking from unstabilized platforms by particle filtering with embedded camera ego motion[C]//Proceedings of the 6th IEEE International Conference on Advanced Video and Signal Based Surveillance.[S.l.]:IEEE, 2009:400-405.
[8]  张涛,费树岷,王丽丽.基于色彩相关直方图和粒子滤波的目标跟踪[J].东南大学学报,2011,41(增刊1):134-138. Zhang Tao, Fei Shumin, Wang Lili. Particle filter tracking using color correlogram[J]. Journal of Southeast University, 2011,41(suppl 1):134-138. (in Chinese)
[9]  Leichter I, Lindenbaum M, Rivlin E. Mean shift tracking with multiple reference color histograms[J]. Computer Vision and Image Understanding, 2010,114(3):400-408.
[10]  裴立志,王润生.基于多个颜色分布模型的粒子滤波跟踪算法[J].电路与系统学报,2011,16(1):92-95. Pei Lizhi, Wang Runsheng. Particle filter tracker based on multiple color distribution models[J]. Journal of Circuits and Systems, 2011,16(1):92-95. (in Chinese)
[11]  Wang J, Yagi Y. Integrating color and shape-texture features for adaptive real-time object tracking[J]. IEEE Transactions on Image Processing, 2008,17(2):235-240.
[12]  Leichter I, Lindenbaum M, Rivin E. Tracking by affine kernel transformations using color and boundary cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(1):164-171.
[13]  Zhan M H, Xin M, Yang J. Adaptive multi-feature tracking in particle swarm optimization based particle filter framework[J]. Journal of Systems Engineering and Electronics, 2012,23(5):775-783.
[14]  Du W, Piater J. A probabilistic approach to integrating multiple cues in visual tracking[C]//Proceedings of the 10th Europe on Conference on Computer Vision. Berlin, Germany: Springer, 2008:225-238.
[15]  Paul B, Lyudmila M, David B, et al. Sequential Monte Carlo tracking by fusing multiple cues in video sequences[J]. Image and Vision Computing, 2007,25(8):1217-1227.
[16]  Maggio E. Adaptive multi-feature tracking in a particle filtering framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007,17(10):1348-1359.
[17]  Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000,10(3):197-208.
[18]  Sanjeev Arulampalam M, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transaction on Signal Processing, 2002,50(2):174-184.
[19]  田金文,苏康,柳健.基于局部熵差的图像匹配方法算法及计算机仿真[J].宇航学报,1999,20(1):28-32. Tian Jinwen, Su Kang, Liu Jian. Image matching based on local entropy difference: algorithm and computer simulation[J]. Journal of Astronautics, 1999,20(1):28-32. (in Chinese)
[20]  Zachary J M. An information theoretic approach to content based image retrieval [D]. Louisiana: Louisiana State University and Agricultural and Mechanical College,2000.
[21]  张善卿,辛维斌,张桂戌.局部熵驱动的模糊区域竞争图像分割[J].中国图像图形学报,2011,16(6):953-959. Zhang Shanqing, Xin Weibin, Zhang Guixu. Fuzzy region competition images segmentation driven by local entropy[J]. Journal of Image and Graphics, 2011,16(6):953-959. (in Chinese)
[22]  Itti L, Koch C. Computational modeling of visual attention[J]. Nature Reviews Neuroscience, 2001,2(3):194-230.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133