全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑一阶驾驶仪动力学的角度控制最优制导律

DOI: 10.15918/j.tbit1001-0645.2015.06.008

Keywords: 飞行器控制及导航技术 最优制导律 落角约束 归一化加速度 制导性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究考虑驾驶仪动力学的最优制导律,构造了引入一阶驾驶仪动力学的导弹运动方程. 基于带终端状态约束的最优控制问题,将传统的目标权函数扩展为导弹剩余飞行时间负n次幂的形式,推导得到考虑一阶驾驶仪动力学的最优制导律通用表达式. 通过将目标函数的终端状态权系数选为穷大,化简得到考虑一阶驾驶仪动力学的角度控制最优制导律OIACGL-1,并讨论了OIACGL-1的两种简化形式. 引入落角约束和初始方向误差,分析了OIACGL-1系统的归一化加速度特性;分析指出,OIACGL-1系统在n≥0时的终端加速度指令严格为0,对应的终端加速度响应近似为0

References

[1]  Ratnoo A, Ghose D. Impact angle constrained interception of nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010,33(1):269-275.
[2]  Zarchan P. Tactical and strategic missile guidance[M]. 5th ed. Virginia: AIAA Inc., 2007:31-50,541-569.
[3]  Ryoo C K, Shin H S, Tahk M J. Energy optimal waypoint guidance synthesis for antiship missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(1):80-95.
[4]  Yoon M G. Relative circular navigation guidance for the impact angle control problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44(4):1449-1463.
[5]  Cherry G. A general explicit, optimizing guidance law for rocker-propelled spacecraft, AIAA 1964[R]. [S.l.]: AIAA, 1964:614-638.
[6]  Song T L, Shin S J. Time-optimal impact angle control for vertical plane engagements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35(2):738-742.
[7]  Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005,28(4):724-732.
[8]  Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006,14(3):483-492.
[9]  Lee Y I, Kim S H, Tahk M J. Optimality of linear time-varying guidance for impact angle control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012,48(3):2802-2817.
[10]  Lee Y I, Kim S H, Lee J I. Analytic solutions of generalized impact angle control guidance law for first-order lag system[J]. Journal of Guidance, Control, and Dynamics, 2013,36(1):96-112.
[11]  Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance [J]. Journal of Guidance, Control, and Dynamics, 2006,29(2):261-268.
[12]  刘大卫,夏群利,左媞媞,等.包含弹体动力学的终端角约束弹道成型制导律[J].北京理工大学学报,2013,33(4):363-368. Liu Dawei, Xia Quanli, Zuo Titi, et al. Trajectory shaping guidance law with terminal impact angle constraint including missile body dynamics [J]. Transactions of Beijing Institute of Technology, 2013,33(4):363-368. (in Chinese)
[13]  Wang H, Lin D F, Cheng Z X. Time-to-go weighted optimal trajectory shaping guidance law[J]. Journal of Beijing Institute of Technology, 2011,20(3):317-323.
[14]  王辉,林德福,崔晓曦.一类扩展的弹道成型制导律[J].北京理工大学学报,2014,34(6):597-603. Wang Hui, Lin Defu, Cui Xiaoxi. Extended trajectory shaping guidance laws[J]. Transactions of Beijing Institute of Technology, 2014,34(6):597-603. (in Chinese)
[15]  孙胜,张华明,周荻.考虑自动驾驶仪动特性的终端约束滑膜导引律[J].宇航学报,2013,34(1):69-78. Sun Sheng, Zhang Huaming, Zhou Di. Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories[J]. Journal of Astronautics, 2013,34(1):69-78. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133