全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多传感器人体检测的FHOG图像特征融合

DOI: 10.15918/j.tbit1001-0645.2015.02.016

Keywords: 视觉激活度 融合方向梯度直方图 图像特征融合 人体检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种新的基于方向梯度直方图(HOG)的图像特征融合方法. 该方法采用视觉激活度(VAM)来选择具有显著方向性的局部梯度统计值,构成融合的方向梯度直方图(FHOG),有效地解决了多分辨率(MR)图像融合存在的不足. 文中把这些融合特征输入线性支持向量机(SVM),训练得到人体/背景二元分类器用于人体检测. 实验表明,与传统多分辨率图像融合方法相比,在参考点处本文提出方法漏检率下降3~10%,虚警率平均下降20%以上

References

[1]  Burt P J. The pyramid as a structure for efficient computation[M]. Berlin: Springer Berlin Heidelberg, 1984:6-35.
[2]  Burt P J, Kolczynski R J. Enhanced image capture through fusion[C]//Proceedings of the 1993 IEEE 4th International Conference on Computer Vision. Berlin, IEEE, 1993:173-182.
[3]  Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995,57(3):235-245.
[4]  Rockinger O. Image sequence fusion using a shift-invariant wavelet transform[C]//Proceedings of the International Conference on Image Processing. Los Alamitos, USA:IEEE, 1997:288-291.
[5]  Petrovic V S, Xydeas C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 2004,13(2):228-237.
[6]  Piella G. A general framework for multiresolution image fusion: from pixels to regions[J]. Information Fusion, 2003,4(4):259-280.
[7]  Mangai U G, Samanta S, Das S, et al. A survey of decision fusion and feature fusion strategies for pattern classification[J]. IETE Technical Review, 2010,27(4):293-307.
[8]  Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
[9]  Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamitos, USA: IEEE, 2005:886-893.
[10]  Zhou C, Tang L, Wang S, et al. Human detection based on fusion of histograms of oriented gradients and main partial features[C]//Proceedings of 2nd International Congress on Image and Signal Processing.[S.l.]: IEEE,2009:1-5.
[11]  Spinello L, Siegwart R. Human detection using multimodal and multidimensional features[C]//Proceedings of the 2008 IEEE International Conference on Robotics and Automation.Pasadena, USA: IEEE, 2008:3264-3269.
[12]  Edelman S, Intrator N, Poggio T. Complex cells and object recognition[C]//Proceedings of Neural Information Processing Systems. [S.l.]: NIPS, 1997.
[13]  Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381(6583):607-609.
[14]  Joachims T. Making large-scale support vector machine learning practical[R]. Dortmund, Germany: Technische Universit?t Dortmund, Sonderforschungs-bereich 475, Komplexit?tsreduktion in Multivariaten Datenstrukturen, 1998.
[15]  Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligence System, 2001,2(3):1-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133