全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊信息粒化软测量建模方法研究

Keywords: 软测量,模糊信息粒化,支持向量机,结构风险最小化

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种模糊信息粒化方法和支持向量机相结合的软测量建模方法.利用模糊信息粒化方法对样本数据进行特征提取,降低样本的维数;利用提取的特征作为支持向量机的输入进行建模.用该方法建立柴油凝点的软测量模型,结果表明,该模型具有很好的预测精度和泛化性能,是一种有效的数据建模方法.

References

[1]  Zadeh L A. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/ intelligent systems[J]. Soft Computing, 1998(2):23-25.
[2]  罗敏.粒计算及其研究现状[J].计算机与现代化,2007(1):1-5. Luo Min. Granular computing and its current status of research[J]. Computer and Mordernization, 2007(1):1-5. (in Chinese)
[3]  王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2007,2(6):8-26. Wang Guoyin, Zhang Qinghua, Hu Jun. An overview of granular computing[J]. CAAI Transaction on Intelligent Systems, 2007,2(6):8-26. (in Chinese)
[4]  Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
[5]  张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-41. Zhang Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000,26(1):32-41. (in Chinese)
[6]  Burges C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2:127-167.
[7]  Jose D A A, Maciel F R. Soft sensors development for on-line bioreactor state estimation[J]. Computers and Chemical Engineering, 2000,24(2):1099-1103.
[8]  Vapnik V N. Statistical learning theory[M]. New York: John Wiley & Sons,Inc., 1998.
[9]  边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000. Bian Zhaoqi, Zhang Xuegong. Pattern recognition[M]. Beijing: Tsinghua University Press, 2000. (in Chinese)
[10]  Vapnik V. An overview of statistical learning theory[J]. IEEE Trans on Neural Networks, 1999,10(5):988-999.
[11]  俞金寿,刘爱伦.软测量技术在石油化工中的应用[M].北京:化学工业出版社,2000. Yu Jinshou, Liu Ailun. Soft sensor technology in petrochemical industry application[M]. Beijing: Petrochemical Press, 2000. (in Chinese)
[12]  Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8:338-353.
[13]  Zadeh L A. Fuzzy sets and information granularity. advances in fuzzy set theory and applications[M]. Amsterdam: North Holland Publishing, 1979.
[14]  李洋.基于信息粒化的机器学习分类及回归预测分析 .北京:北京师范大学数学科学学院,2009. Li Yang.Machine learning classification and regression predict analysis based on information granulation . Beijing: School of Mathematical Sciences, Beijing Normal University, 2009. (in Chinese)
[15]  Pedrycz W, Smith M H, Bargiela A. A granular signature of data //Proceedings of Int Conf NAFIPS. Atlanta: , 2000:69-73.
[16]  Courant R, Hilbert D. Method of mathematical physics[M]. New York: Springer Verlag, 1953.
[17]  Sathiya S, Keerthi C J. Asymptotic behavior of support vector machines with Gaussian kernel[J]. Neural Computation, 2003,15(7):1667-1689.
[18]  王济,胡晓.Matlab在振动信号处理中的应用[M].北京:中国水利水电出版社,2006. Wang Ji, Hu Xiao. Application of Matlab in vibration signal processing[M]. Beijing: China Water Power Press, 2006. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133