全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于Census变换的可变权值立体匹配算法

Keywords: 立体匹配,Census变换,可变权值,最小均匀度子邻域

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统基于Census变换立体匹配算法精度不高的问题,提出了一种基于改进Census变换的可变权值立体匹配算法.在分析传统Census变换缺陷的基础上,提出利用最小均匀度子邻域均值代替中心像素灰度值进行Census变换,可有效增强算法的抗干扰能力.通过加权区域海明距离均值和标准差作为相似性测度进行立体匹配,减少误匹配,提高匹配精度并通过左右一致性检测和遮挡填充,生成最终视差图.实验结果表明,该算法鲁棒性得到增强,在深度不连续区域也可以得到准确的视差.

References

[1]  Matthies L, Maimone M, Johnson A, et al. Computer vision on Mars[J]. International Journal of Computer Vison, 2007,75(1):67-92.
[2]  赖小波,朱世强,马璇.一种对光照条件不敏感而快速的局部立体匹配[J].机器人,2011,33(3):292-298. Lai Xiaobo, Zhu Shiqiang, Ma Xuan. A fast local stereo matching insensitive to illumination conditions[J]. Robot, 2011,33(3):292-298. (in Chinese)
[3]  Scharstein D, Szeliski R, Zabin R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [C]//Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision. Kauai, HI: IEEE, 2001:131-140.
[4]  Einecke N, Eggert J. A two-stage correlation method for stereoscopic depth estimation [C]//Proceedings of International Conference on Digital Image Computing: Techniques and Applications. Sydney, NSW: IEEE, 2010:227-234.
[5]  Nalpantidis L, Gasteratos A. Biologically and psychophysically inspired adaptive support weights algorithm for stereo correspondence[J]. Robotics and Autonomous Systems, 2010,58(5):457-464.
[6]  Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence [C]//Proceedings of European Conference on Computer Vision. Stockholm, Sweden:[s.n.], 1994:151-158.
[7]  Mei X, Sun X, Zhou M C, et al. On building an accurate stereo matching system on graphics hardware [C]//Proceedings of IEEE International Conference on Computer Vision Workshops. Barcelona: IEEE, 2011:467-474.
[8]  Humenberger M, Engelke T, Kubinger W. A census-based stereo vision algorithm using modified semi-global matching and plane-fitting to improve matching quality [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. San Francisco, USA: IEEE, 2010:77-84.
[9]  Chang X F, Zhou Z, Wang L, et al. Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming [C]//Proceedings of International Conference on 3D Imaging, Modeling, Process, Visualization and Transmission. Hangzhou: IEEE. 2011:73-79.
[10]  Papadakis N, Caselles V. Multi-label depth estimation for graph cuts stereo problems[J]. Journal of Mathematical Imaging and Vision, 2010,38(1):70-82.
[11]  Yang Q X, Wang L, Ahuja N. A constant-space belief propagation algorithm for stereo matching [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010:1458-1465.
[12]  Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,2:807-814.
[13]  Nalpantidis L, Gasteratos A. Stereo vision for robotic applications in the presence of non-ideal lighting conditions[J]. Image and Vision Computing, 2010,28(6):940-951.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133