Defant M J, Xu J F, Kepezhinskas P, et al. 2002. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 18(2): 129~142.
[14]
Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geol., 30(10): 915~918.
[15]
Muir R J, Weaver S D, Bradshaw J D, et al. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: Granditoid magmas formed by melting of mafic lithosphere[J]. J. Geol. Soc. Lond,152: 689~701.
[16]
Oyarzun R, Marquez A, Lillo J, et al. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism [ J ]. Mineralium Deposita, 36:794~ 798.
[17]
Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru[J].J. Petrol., 37(6): 1491~1521.
[18]
Rapp P-R, Shimizu N, Norman M-D, et al. 1999. Reaction between slab-derived melt and peridotite in the mantle wedge: Experimental constrains at 3.8GPa[J]. Chem. Geol., 60: 335~356.
[19]
Reich M, Parada M A, Palacios C, et al. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambers giant porphyry copper deposit in the Andes of central Chile: Metallogenic implications [J]. Mineralium Deposita, 38: 876~885.
[20]
Richards J P. 1995. Alkalic-type epithermal gold deposits: A review [Z]. Mineralogical Association of Canada Short Course Series, 23:367~ 400.
[21]
Sajona F G and Maury R C. 1998. Association of adakites with gold and copper mineralization in the Philippines[J]. CR. Acad. Sci. Paris,326(1): 27~34.
[22]
Smithies R H. 2000. The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozonic adakite [ J ]. Earth Planet. Sci. Lett., 182:115~125.
[23]
Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic zone[J]. Contrib. Mineral. Petrol., 123: 263~281.
[24]
Tatsumi Y. 1986. Chemical characteristics of fluid phase released from a subduction lithosphere and origin of arc magma: evidence from highpressure experiments and natural rocks [ J ] J. Volcano. Geotherm.Res., 29: 293~ 309.
[25]
Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled bymelting of amphibolite in subduction zones[J ].Nature, 417: 837~840.
[26]
Hamilyn P R, Keays R R, Cameron W E, et al. 1985. Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas[J]. Geochim. Cosmochim. Acta, 49(8): 1797~1811
[27]
Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet [J ]. Science, 255: 1663~1670.
[28]
Harrison T M, Copeland P, Kidd W S F, et al. 1995. Activation of the Nyainqentanghla shear zone: implication for uplift of the southern Tibetan Plateau[J]. Tectonics, 14(3): 658~676.
[29]
Hou Z Q, Gao Y F, Qu X M, et al. 2004c. Origin of adakitic intrusives generated during mid-Miocene east-west extension in South Tibet [J]. Earth Planet. Sci. Lett., 220: 139~155.
[30]
Kay R W J. 1978. Aleutian magnesium andesite melts from subducted Pacific oceanic crust[J]. J. Volcano. Geotherm. Rse., 4: 117~132.
[31]
Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in Southern South America[J]. J. Geol., 101(6): 703~714.
[32]
Kay S M, Mpodozis C and Coira B. 1999. Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33°S Latitude) [A]. In: Skinner B J, ed. Geology and ore deposits of the central Andes [ C ]. Society of Economic Geologist Special Publication,7. 27~ 59.
[33]
Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust [ J ]. GSA Today, 11(3): 4~9.
[34]
Kerrich R, Goldfarb R, Groves D, et al. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Sci. in China, 43: 1~68.
[35]
Martin H. 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46: 411~429.
[36]
Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. J. Petrol., 40: 1399~1424.
Atherton M P and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362: 144~146.
[47]
Bissig T, Clark A H, Lee J K W, et al. 2003. Petrogenetic and metallogenic responses to Miocene slab flattening: new constraints from the EI Indio-Pascua Au-Ag-Cu belt, Chile/Argentina [ J ]. Mineralium Deposita, 38: 844~862.
[48]
Blinsiuk P M, Hacker B, Glodny J, et al. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 412: 628~632.
[49]
Carroll M R and Rutherford M J. 1985. Sulfide and sulfate saturation in hydrous silicate melts[J]. J. Geophys. Res., 90(Supp. ): C601~C612.
[50]
Chung S L, Liu D Y, Ji J Q, et al. 2003. Adakites from continental collision zone: Melting of thickened lower-crust beneath southern Tibet[J]. Geol., 31(11): 1021~1024.
[51]
Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension [J]. Nature, 374: 49~52.
[52]
Copeland P, Harrison Y M and Yun P. 1995. Thermal evolution of the Gangdes batholith, Southern Tibet: a history of episodic unroofing [J]. Tectonics, 14: 223~236.
[53]
Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating,petrological characteristics and geodynamic significance [ J ]. Earth Planet. Sci. Lett., 79: 281~302.
[54]
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere [ J ]. Nature,347: 662~ 665.
[55]
Drummond M S and Defant M J. 1990. A model for trondhjemitetonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons[J]. J. Geophys. Res., 95 (13): 21503~21521.
[56]
Duerr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet) [J]. Geol. Soc. Am. Bull., 108(6): 669~684.