全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2005 

西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束

Keywords: 地质学,源岩相变,深部过程,埃达克质斑岩,冈底斯斑岩铜矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

西藏冈底斯斑岩铜钼成矿系统(13.6~16.9Ma)发育在印-亚大陆后碰撞地壳伸展环境。成矿前斑岩成岩年龄≥17Ma,以花岗闪长斑岩为主,成矿期斑岩形成于14.5~17.6Ma之间,以二长花岗斑岩和石英二长斑岩为主,成矿后斑岩为花岗斑岩,其成岩年龄为11.2Ma。3期斑岩均为高钾钙碱性或钾玄岩系列,地球化学上类似于玄武质下地壳部分熔融产生的埃达克质岩。成矿前斑岩具有最低的ΣREE(27×10-6~45×10-6)、wY(2.9×10-6~3.4×10-6)和wSm/wYb(3.0~4.9),最高的wZr/wSm值(50~118);成矿后斑岩具有最高的ΣREE(122×10-6~197×10-6)和wY(8.2×10-6),中等的wSm/wYb(5.9~6.2)和wZr/wSm值(34~44);成矿期斑岩总体处于两者之间,其Sr-Nd同位素组成与CordilleraBlanca埃达克质花岗岩类似。研究提出,来自深部的软流圈物质或亏损地幔物质与下地壳物质交换,不仅导致冈底斯加厚、下地壳熔融,而且提供了巨量金属供应。部分熔融首先从下地壳底部开始,逐渐向上部迁移。下地壳石榴石角闪岩部分熔融过程中,残留相由角闪石向石榴石大规模转变导致角闪石的大量分解,释放出大量流体,是冈底斯斑岩含矿性的主导因素。

References

[1]  张旗 王焰 等.中国东部燕山期埃达克岩的特征及其构造—成矿意义[J].岩石学报,2001,17(2):236-244,.
[2]  芮宗瑶 刘玉琳 等.新疆东天山斑岩型铜矿带及其大地构造格局[J].地质学报,2002,76(1):83-94,.
[3]  侯增谦 黄卫 等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,28(10):27-29,40.
[4]  王强 赵振华 等.底侵玄武质下地壳的熔融:来自安微沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学,2001,30(4):353-362,.
[5]  常承法 郑锡澜.中国西藏南部珠穆朗玛峰地区构造特征[J].地质科学,1973(1):1-12.
[6]  曲晓明 张绮玲 等.川西农都柯火山岩型低温热液Au—Ag多金属矿床的特征与成因[J].矿床地质,2001,20(3):199-207,.
[7]  张旗.埃达克质岩及其地球动力学意义学术研讨会在北京召开[J].地质通报,2002,21(2):112-112,.
[8]  侯增谦 曲晓明 王淑贤 高永丰 杜安道 黄卫.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学:D辑,2003,33(7):609-618,.
[9]  侯增谦 莫宣学 等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1-12,.
[10]  曲晓明 侯增谦 李振清.冈底斯铜矿带含矿斑岩的^40Ar/^39Ar年龄及地质意义[J].地质学报,2003,77(2):245-252,.
[11]  任纪舜 肖黎薇.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱[J].地质通报,2004,23(1):1-11,.
[12]  潘桂棠 王立全 朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004,23(1):12-19,.
[13]  Defant M J, Xu J F, Kepezhinskas P, et al. 2002. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 18(2): 129~142.
[14]  Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geol., 30(10): 915~918.
[15]  Muir R J, Weaver S D, Bradshaw J D, et al. 1995. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: Granditoid magmas formed by melting of mafic lithosphere[J]. J. Geol. Soc. Lond,152: 689~701.
[16]  Oyarzun R, Marquez A, Lillo J, et al. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism [ J ]. Mineralium Deposita, 36:794~ 798.
[17]  Petford N and Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru[J].J. Petrol., 37(6): 1491~1521.
[18]  Rapp P-R, Shimizu N, Norman M-D, et al. 1999. Reaction between slab-derived melt and peridotite in the mantle wedge: Experimental constrains at 3.8GPa[J]. Chem. Geol., 60: 335~356.
[19]  Reich M, Parada M A, Palacios C, et al. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambers giant porphyry copper deposit in the Andes of central Chile: Metallogenic implications [J]. Mineralium Deposita, 38: 876~885.
[20]  Richards J P. 1995. Alkalic-type epithermal gold deposits: A review [Z]. Mineralogical Association of Canada Short Course Series, 23:367~ 400.
[21]  Sajona F G and Maury R C. 1998. Association of adakites with gold and copper mineralization in the Philippines[J]. CR. Acad. Sci. Paris,326(1): 27~34.
[22]  Smithies R H. 2000. The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozonic adakite [ J ]. Earth Planet. Sci. Lett., 182:115~125.
[23]  Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic zone[J]. Contrib. Mineral. Petrol., 123: 263~281.
[24]  Tatsumi Y. 1986. Chemical characteristics of fluid phase released from a subduction lithosphere and origin of arc magma: evidence from highpressure experiments and natural rocks [ J ] J. Volcano. Geotherm.Res., 29: 293~ 309.
[25]  Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled bymelting of amphibolite in subduction zones[J ].Nature, 417: 837~840.
[26]  Hamilyn P R, Keays R R, Cameron W E, et al. 1985. Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas[J]. Geochim. Cosmochim. Acta, 49(8): 1797~1811
[27]  Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet [J ]. Science, 255: 1663~1670.
[28]  Harrison T M, Copeland P, Kidd W S F, et al. 1995. Activation of the Nyainqentanghla shear zone: implication for uplift of the southern Tibetan Plateau[J]. Tectonics, 14(3): 658~676.
[29]  Hou Z Q, Gao Y F, Qu X M, et al. 2004c. Origin of adakitic intrusives generated during mid-Miocene east-west extension in South Tibet [J]. Earth Planet. Sci. Lett., 220: 139~155.
[30]  Kay R W J. 1978. Aleutian magnesium andesite melts from subducted Pacific oceanic crust[J]. J. Volcano. Geotherm. Rse., 4: 117~132.
[31]  Kay S M, Ramos V A and Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in Southern South America[J]. J. Geol., 101(6): 703~714.
[32]  Kay S M, Mpodozis C and Coira B. 1999. Neogene magmatism, tectonism, and mineral deposits of the central Andes (22° to 33°S Latitude) [A]. In: Skinner B J, ed. Geology and ore deposits of the central Andes [ C ]. Society of Economic Geologist Special Publication,7. 27~ 59.
[33]  Kay S M and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust [ J ]. GSA Today, 11(3): 4~9.
[34]  Kerrich R, Goldfarb R, Groves D, et al. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Sci. in China, 43: 1~68.
[35]  Martin H. 1999. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos, 46: 411~429.
[36]  Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. J. Petrol., 40: 1399~1424.
[37]  秦克章 李惠民.内蒙古乌奴格吐山斑岩铜钼矿床的成岩,成矿时代[J].地质论评,1999,45(2):180-185,.
[38]  莫宣学 赵志丹 邓晋福 董国臣 周肃 郭铁鹰 张双全 王亮亮.印度—亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148,.
[39]  孟祥金 侯增谦 高永丰 黄卫 曲晓明 屈文俊.西藏冈底斯成矿带驱龙铜矿Re—Os年龄及成矿学意义[J].地质论评,2003,49(6):660-666,.
[40]  王强 赵振华 许继峰 白正华 王建新 刘成新.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报,2004,20(2):351-360,.
[41]  刘红涛 张旗 刘建明 叶杰 曾庆栋 于昌明.埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系[J].岩石学报,2004,20(2):205-218,.
[42]  侯增谦 钟大赉 邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,2004,31(1):1-14,.
[43]  芮宗瑶 李荫清 等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23,.
[44]  张连昌 秦克章 英基丰 夏斌 舒建生.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系[J].岩石学报,2004,20(2):259-268,.
[45]  更多...
[46]  Atherton M P and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 362: 144~146.
[47]  Bissig T, Clark A H, Lee J K W, et al. 2003. Petrogenetic and metallogenic responses to Miocene slab flattening: new constraints from the EI Indio-Pascua Au-Ag-Cu belt, Chile/Argentina [ J ]. Mineralium Deposita, 38: 844~862.
[48]  Blinsiuk P M, Hacker B, Glodny J, et al. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 412: 628~632.
[49]  Carroll M R and Rutherford M J. 1985. Sulfide and sulfate saturation in hydrous silicate melts[J]. J. Geophys. Res., 90(Supp. ): C601~C612.
[50]  Chung S L, Liu D Y, Ji J Q, et al. 2003. Adakites from continental collision zone: Melting of thickened lower-crust beneath southern Tibet[J]. Geol., 31(11): 1021~1024.
[51]  Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension [J]. Nature, 374: 49~52.
[52]  Copeland P, Harrison Y M and Yun P. 1995. Thermal evolution of the Gangdes batholith, Southern Tibet: a history of episodic unroofing [J]. Tectonics, 14: 223~236.
[53]  Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating,petrological characteristics and geodynamic significance [ J ]. Earth Planet. Sci. Lett., 79: 281~302.
[54]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere [ J ]. Nature,347: 662~ 665.
[55]  Drummond M S and Defant M J. 1990. A model for trondhjemitetonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons[J]. J. Geophys. Res., 95 (13): 21503~21521.
[56]  Duerr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet) [J]. Geol. Soc. Am. Bull., 108(6): 669~684.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133