全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2001 

冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?

Keywords: 冈底斯,碰撞造山带,花岗斑岩,斑岩铜矿带

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过广泛的野外地质调查和岩石地球化学,矿床学,Re-Os同位素,硫、铅同位素的综合研究,首次比较系统地论述了雅鲁藏布江北侧冈底斯斑岩型铜矿带含矿斑岩的岩石地球化学特征和矿床的蚀变矿化特征,查明了矿化时代和成矿物质来源,阐明了该带铜(钼、金)多金属成矿作用与冈底斯碰撞造山带发展演化的关系。并通过与玉龙斑岩铜矿带的简要对比,指出位于雅鲁藏布江北侧的冈底斯斑岩铜矿带完全有可能成为西藏的第二条“玉龙”铜矿带,具有形成世界级铜矿带的巨大潜力。研究表明,冈底斯斑岩铜矿带含矿斑岩属钾玄岩至高钾钙碱性岩系。地球化学上以富集大离子不相容元素Rb、Ba、Th、Sr,亏损高场强元素Nb、Ta和重稀土元素Yb为特点:稀土元素则为轻、重稀土分馏明显的平滑右倾型式。矿床具有自斑岩体I向外由钾化-绢英岩化-青盘岩化的蚀变分带:矿化以岩浆期后阶段形成的脉状、网脉状和细脉浸染状矿体为主,矿石矿物组合简单。含矿斑岩和硫化物具有一致的硫船同位素组咸,硫同位素具幔源特征,铅同位素显示造山带铅特点。由南木矿区5个辉钼矿样品得出了t=(14.6+0.20)Ma的Re-Os等时线年龄,说明成矿时代与斑岩体的侵入时代(20~14Ma)是一致的。

References

[1]  [1]芮宗瑶, 黄崇轲, 齐国明,等. 1984. 中国斑岩铜(钼)矿床[M].北京: 地质出版社.
[2]  [2]杜光树, 姚鹏, 尼登逵, 等. 1998.喷流成因夕卡岩与成矿——以西藏甲马铜多金属矿床为例[M]. 成都:四川省科学技术出版社.
[3]  [3]张理刚. 1985. 稳定同位素在地质科学中的应用[M]. 西安:陕西科学技术出版社.
[4]  [4]唐仁鲤, 罗怀松. 1995. 西藏玉龙斑岩铜(钼)矿带地质[M]. 北京:地质出版社.
[5]  [5]Allegre C J and 34 others. 1984. Structure and evolution of the Himalayan-Tibetorogenic belt[J]. Nature, 307: 17~22.
[6]  [6]Batchelor R A and Bowden P. 1985. Petrogenetic interpretation of granitoid rockseries using multicationic parameters[J]. Chem. Geol., 48: 43~55.
[7]  [7]Beck R A, Burbank D W, Sercombe W J, et al. 1995. Stratigraphic evidence for anearly collision between northwest India and Asia[J]. Nature, 373: 55~58.
[8]  [8]Bird P. 1978.Initiation of introcontinental subduction in the Himalaya[J]. J.Geophys. Res., 83: 4975~4987.
[9]  [9]Brian K T and Collin I G, 2001. Isotope characterization of lead in galena from oredeposits of the Aysen Region, Southern Chile[J]. Mineralium Deposita, 36: 45~57.
[10]  [10]Camus F and Dilles J H. 2001. A special issue devoted to porphyry copper deposit sof northern Chile-Preface[J]. Econ. Geol., 96: 233~238.
[11]  [11]Chen W J, Li Q, Hao J, et al. 1999. Postcrystallization thermal evolution histo ryof Gangdes batholithic zone and its tectonic implication[J]. Science in Chi na(Series D),42(1): 37~44.
[12]  [12]Chen W J, Li Q and Ma Z J. 1996. Constrains of the MDD mold to quantitative stud yof nonstationary tectonic movements[J]. Seismology and Geol. 18: 56~60.
[13]  [13]Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension[J]. Nature, 374: 49~52.
[14]  [14]Copeland P, Harrison Y M, Yun P, et al. 1995. Thermal evolution of the Gangdes batholith, Southern Tibet: A history of episodic unroofing[J]. Tectonics, 14(2) : 223~236.
[15]  [15]Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrologi cal characteristics andgeodynamic significance[J]. Earth Planet. Sci. Lett. 7 9: 281~302.
[16]  [16]Durr S B. 1996, Provenance of Xizang fore-arc basin clastic rocks (Cretaceous, south Tibet)[J]. Geol. Soc. Am. Bull., 108: 669~684.
[17]  [17]Edwards M A and Harrison T M. 1997. When did the roof collapse Late Miocene N-Sextension in the High Himalaya revealed by Th-Pb monazite dating of the Khula K angrigranite[J]. Geol. 25: 543~546.
[18]  [18]England P and Houseman G. 1989. Extension during continental convergence with application to the Tibetan plateau[J]. J. Geophys. Res., 94: 17561~17579.
[19]  [19]Gaetani M and Garzanti E. 1991. Multicyclic history of the northern India continental margin(northwestern Himalaya)[J]. Am. Assoc. Pet. Geol. Bull., 75: 142 7~1446.
[20]  [20]Harrsion T M, Copeland P and Kidd W S F, et al. 1992. Raising Tibet[J]. Scienc e,288: 1663~1670.
[21]  更多...
[22]  [21]Harrsion T M, Copeland P, Kidd W S F. 1995. Activation of the Nyainqentanghla shear zone: implication for uplift of the southern Tibetan Plateau[J]. Tectonics , 14: 658~676.
[23]  [22]Harrison T M, Grove M, McKeegan K D, et al. 1999. Origin and episodic emplacemen tof the Manaslu intrusive complex, central Hiamalaya[J]. Petrol., 40: 3~19.
[24]  [23]Harrison T M, Grove M, Lovera O M, et al. 2000. Displacement history of the Gangdese thrust, Southeastern Tibet[J]. J. Geophys. Res., 105: 19211~19230.
[25]  [24]Key S M. 1994. Yound mafic back arc volcanic rocks as indicators of continentallithospheric delamination beneath the Argentine Pona plateau, Central Andes[J] . Geophys.Res., 99: 24323~24339.
[26]  [25]Key R W and Key S M. 1994. Delamination and delamination Magmatism[J]. Tectonophysics, 219: 177~189.
[27]  [26]Le Fort P. 1996. Metamorphism and magmatism during the Himalayan collision[A]. In:Coward M P, Ries, ed. Collision Tectonics[C]. Geol. soc. spec. publ., 19: 159~172.
[28]  [27]Le Fort P. 1975. Himalayas, the collided range, present Knowledge of the continental arc[M]. Am. J. Sci, 275A: 1~44.
[29]  [28]Ma H W. 1990. Petrology and mineralization of granites in Yulong porphyry copperbelt, Tibet[M]. Beijing: China University of Geosciences Press. 1~158.
[30]  [29]Molnar P and Tapponnier P. 1978. Active tectonics of Tibet[J]. J. Geophys. Res .,85: 5361~5375.
[31]  [30]Murphy M A, Yin A and Harrison T M. 1997. Significant crustal shorting insouth-central Tibet prior to the Indo-Asian collision[J]. Geol., 25: 719~722.
[32]  [31]Pan Y and Kidd W S F. 1992. Nyaingentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plateau[J]. Geol., 20: 775~778.
[33]  [32]Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene Calcalkaline volcanicrocks from the Kastamonu area, North Turkey[J]. Contrib. Mineral. Petrol., 58: 63~81.
[34]  [33]Pierce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa t oGolmud[M]. Londm: Phil. Trans. Roy. Soc. Lond., A327: 203~213.
[35]  [34]Richards J P, Boyce A J and Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry C umineralization[J]. Econ. Geol., 96: 271~306.
[36]  [35]Schares E, Xu R H and Allegre C J. 1984. U-Pb geochronology of the Gangdese(Transhimalaya)plutonism in the Lhasa-Xizang region, Tibet[J]. Earth Planet. Sci. L ett., 69:311~320.
[37]  [36]Seal R R Ⅱ, Ayuso R A, Foley N K, et al. 2001. Sulfur and lead isotope geochemistry of hypogene mineralization at the Barite Hill gold deposit, Carolina slate belt,southeastern United States: a window into and through regional metamorphis m. MineraliumDeposita, 36: 137~148.
[38]  [37]Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J] . Nature,343: 431~437.
[39]  [38]Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. J. Ann. Rev. Earth Planet. Sci., 28: 211~280.
[40]  [39]Yin A, Harrison T M, Ryerson F J, et al. 1994. Tertiary structural evolution ofthe Gangdes thrust system, southeastern Tibet[J]. J. Geophys. Res., 99(18): 17 5~201.
[41]  [40]Yin J, Xu J, Liu C, et al. 1988. The Tibetan Plateau: regional stratigraphic context and previous work[M]. London: Phil Trans. Roy. Soc. Lond. A327: 5~52.
[42]  [41]Tomlinson A and Blanco N. 1997a. Structural evolution and displacement history o fthe west fault system, Precordillera, Chile: Part1, Synmineral history: Ⅷ[C ]. CongressoGeologico Chileno, 7th, Antofagasta. 3: 1873~1877.
[43]  [42]Tomlinson A and Blanco N. 1997b. Structural evolution and displacement history o fthe west fault system, Precordiuera, Chile: Part2, Postmineral history[C]. C ongressoGeologico Chileno, 7th, Antofagasta, 3: 1878~1882.
[44]  [43]Townley B K and Godwin C I. 2001. Isotope characterization of lead in galena fro more deposits of the Aysen Region, South Chile[J]. Mineralium Deposita, 36: 4 5~57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133