全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ComputationalpredictionofMHCⅡ-peptideligandsbindingspecificitiesbyAUCOptimizedGibbs

DOI: 10.7511/dllgxb201401005, PP. 28-36

Keywords: Gibbssamplingmethod,epitope,MHCⅡmolecules,reducedhomology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Inthedesignofpeptide-basedorotherdefinedantigen-basedvaccines,itisimportanttoknowwhichfragmentsofpathogen-derivedproteinswouldbindtotheMHCⅡmolecules.MoststudiesoftheMHCⅡepitopepredictionrarelygavethequantitativeanalysesofbindingspecificities.Sotheaccuracyofthesemodelsstillneedstobeimproved.AUCOptimizedGibbs(AOG)methodusesthehomologyreducedAUC,ratherthantherelativeentropytoguidethesampler.Itmakesboththepositiveandnegativeinformationofthesamplesbeincorporatedintothemodel.AOGachievesaverageAUCvaluesof0.771and0.713onthetenoriginalandhomologyreducedHLA-DR4(B1*0401)epitopebenchmarks,whicharebetterthan0.744and0.673bytheGibbssamplingmethod.InthequantitativeIEDBMHC-Ⅱbenchmarks,AOGachievesanaverageAUCvalueof0.766,comparedto0.718bytheTEPITOPE.AdetailedinspectionofinformationextractedfromHLA-DR4(B1*0401)dataallowstheidentificationofpositionswithobviousspecificities,i.e.,P1,P4,P6andP9positions,whichhavedistinctinfluenceontheMHC-peptidebinding.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133